Úloha krevních destiček v rozvoji nádoru
Úloha krevních destiček v rozvoji nádoru
Krevní destičky jako elementy odpovídající v první vlně na poškození cév hrají velmi významnou úlohu v počátečních fázích procesu hemostázy. Zatímco zapojení trombocytů v procesu koagulace je podrobně studováno a popsáno, jejich role v dalších fyziologických a patologických procesech teprve začíná být předmětem zájmu. Krevní destičky obsahují řadu biologicky aktivních molekul a s tím, jak trombocyty adherují na nádorem aktivovaný nebo poškozený endotel, je řada těchto molekul uvolňována do nádorového mikroprostředí, což vede k ovlivnění cévního tonu, reparaci cévy a neoangiogenezi. Destičky pravděpodobně hrají důležitou úlohu v mikroprostředí nádoru, který můžeme považovat za ránu, která se nehojí.
Klíčová slova:
trombocyt – angiogeneze – hojení rány – růst nádoru – metastazování nádoru
Autoři:
K. Pilátová 1,2; L. Zdrazilova-Dubska 1,2; G. L. Klement 2,3
Působiště autorů:
Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Brno, Czech Republic
1; Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
2; Center of Cancer Systems Biology, Steward St. Elizabeth’s Medical Center, Pediatric Hematology Oncology, Tufts University School of Medicine, Boston, MA, USA
3
Vyšlo v časopise:
Klin Onkol 2012; 25(Supplementum 2): 50-57
Práce byla podpořena Evropským fondem pro regionální rozvoj a státním rozpočtem České republiky (OP VaVpI – RECAMO, CZ.1.05/2.1.00/03.0101).
Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.
Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do bi omedicínských časopisů.
Obdrženo: 12. 11. 2012
Přijato: 15. 11. 2012
Souhrn
Krevní destičky jako elementy odpovídající v první vlně na poškození cév hrají velmi významnou úlohu v počátečních fázích procesu hemostázy. Zatímco zapojení trombocytů v procesu koagulace je podrobně studováno a popsáno, jejich role v dalších fyziologických a patologických procesech teprve začíná být předmětem zájmu. Krevní destičky obsahují řadu biologicky aktivních molekul a s tím, jak trombocyty adherují na nádorem aktivovaný nebo poškozený endotel, je řada těchto molekul uvolňována do nádorového mikroprostředí, což vede k ovlivnění cévního tonu, reparaci cévy a neoangiogenezi. Destičky pravděpodobně hrají důležitou úlohu v mikroprostředí nádoru, který můžeme považovat za ránu, která se nehojí.
Klíčová slova:
trombocyt – angiogeneze – hojení rány – růst nádoru – metastazování nádoru
Zdroje
1. Pearlstein E, Ambrogio C, Gasic G et al. Inhibition of the platelet-aggregating activity of two human adenocarcinomas of the colon and an anaplastic murine tumor with a specific thrombin inhibitor, dansylarginine N-(3-ethyl-1,5-pentanediyl)amide. Cancer Res 1981; 41(11 Pt 1): 4535–4539.
2. Gasic GJ, Gasic TB, Galanti N et al. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer 1973; 11(3): 704–718.
3. Donati MB, Falanga A. Pathogenetic mechanisms of thrombosis in malignancy. Acta Haematol 2001; 106(1–2): 18–24.
4. Pinedo HM, Verheul HM, D’Amato RJ et al. Involvement of platelets in tumour angiogenesis? Lancet 1998; 352(9142): 1775–1777.
5. Verheul HM, Pinedo HM. Tumor Growth: A Putative Role for Platelets? Oncologist 1998; 3(2): II.
6. Vlodavsky I, Eldor A, Haimovitz-Friedman A et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 1992; 12(2): 112–127.
7. Zhou J, Sargiannidou I, Tuszynski GP. The role of adhesive proteins in the hematogenous spread of cancer. In Vivo 2000; 14(1): 199–208.
8. Milsom C, Rak J. Tissue factor and cancer. Pathophysiol Haemost Thromb 2008; 36 (3–4): 160–176.
9. Sierko E, Wojtukiewicz MZ. Platelets and angiogenesis in malignancy. Semin Thromb Hemos 2004; 30(1): 95–108.
10. Sierko E, Wojtukiewicz MZ. Inhibition of platelet function: does it offer a chance of better cancer progression control? Semin Thromb Hemos 2007; 33(7): 712–721.
11. ten Cate H, Falanga A. Overview of the postulated mechanisms linking cancer and thrombosis. Pathophysiol Haemost Thromb 2008; 36(3–4): 122–130.
12. Weyrich AS, Lindemann S, Zimmerman GA. The evolving role of platelets in inflammation. J Thromb Haemos 2003; 1(9): 1897–1905.
13. Gasic GJ, Gasic TB, Stewart CC. Antimetastatic effects associated with platelet reduction. P Natl Acad Sci USA 1968; 61(1): 46–52.
14. Borsig L. The role of platelet activation in tumor metastasis. Expert Rev Anticancer Ther 2008; 8(8): 1247–1255.
15. Gasic GJ. Role of plasma, platelets, and endothelial cells in tumor metastasis. Cancer Metast Rev 1984; 3(2): 99–114.
16. Borsig L. Antimetastatic activities of modified heparins: selectin inhibition by heparin attenuates metastasis. Semin Thromb Hemos 2007; 33(5): 540–546.
17. Erpenbeck L, Schon MP. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood 2010; 115(17): 3427–3436.
18. Palumbo JS, Talmage KE, Massari JV et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 2005; 105(1): 178–185.
19. Connolly GC, Khorana AA. Risk stratification for cancer-associated venous thromboembolism. Best Pract Res Clin Haematol 2009; 22(1): 35–47.
20. Khorana AA, Connolly GC. Assessing risk of venous thromboembolism in the patient with cancer. J Clin Oncol 2009; 27(29): 4839–4847.
21. Lee AY, Levine MN. Venous thromboembolism and cancer: risks and outcomes. Circulation 2003; 107 (23 Suppl 1): I17–I21.
22. Khorana AA. Risk assessment for cancer-associated thrombosis: what is the best approach? Thromb Res 2012; 129 (Suppl 1): S10–S15.
23. Berthold F, Sahin K, Hero B et al. The current contribution of molecular factors to risk estimation in neuroblastoma patients. Eur J Cancer 1997; 33(12): 2092–2097.
24. Engan T, Hannisdal E. Blood analyses as prognostic factors in primary lung cancer. Acta Oncol 1990; 29(2): 151–154.
25. Lopes A, Daras V, Cross PA et al. Thrombocytosis as a prognostic factor in women with cervical cancer. Cancer 1994; 74(1): 90–92.
26. Rosenthal MC, Niemetz J, Wisch N. Hemorrhage and thromboses associated with neoplastic disorders. J Chronic Dis 1963; 16: 667–675.
27. Trousseau A. Phlegmatia alba dolens. Paris: JB Baillere et Fils 1865.
28. Casu B, Vlodavsky I, Sanderson RD. Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 2008; 36(3–4): 195–203.
29. Gerotziafas GT, Papageorgiou C, Hatmi M et al. Clinical studies with anticoagulants to improve survival in cancer patients. Pathophysiol Haemost Thromb 2008; 36(3–4): 204–211.
30. Kakkar AK. An expanding role for antithrombotic therapy in cancer patients. Cancer Treat Rev 2003; 29 (Suppl 2): 23–26.
31. Kakkar AK, Levine MN, Kadziola Z et al. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol 2004; 22(10): 1944–1948.
32. Kakkar AK, Macbeth F. Antithrombotic therapy and survival in patients with malignant disease. Br J Cancer 2010; 102 (Suppl 1): S24–S29.
33. Kakkar AK, Williamson RC. Thromboprophylaxis in the cancer patient. Haemostasis 1998; 28 (Suppl 3): 61–65.
34. Petralia GA, Lemoine NR, Kakkar AK. Mechanisms of disease: the impact of antithrombotic therapy in cancer patients. Nat Clin Pract Oncol 2005; 2(7): 356–363.
35. Thodiyil P, Kakkar AK. Can low-molecular-weight heparins improve outcome in patients with cancer? Cancer Treat Rev 2002; 28(3): 151–155.
36. Lyman GH, Khorana AA, Falanga A et al. American Society of Clinical Oncology guideline: recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol 2007; 25(34): 5490–5505.
37. Gimbrone MA Jr, Aster RH, Cotran RS et al. Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium. Nature 1969; 222(5188): 33–36.
38. Gore I, Takada M, Austin J. Ultrastructural basis of experimental thrombocytopenic purpura. Arch Pathol 1970; 90(3): 197–205.
39. Kitchens CS, Weiss L. Ultrastructural changes of endothelium associated with thrombocytopenia. Blood 1975; 46(4): 567–578.
40. Saba SR, Mason RG. Effects of platelets and certain platelet components on growth of cultured human endothelial cells. Thromb Res 1975; 7(5): 807–812.
41. Klement GL, Yip TT, Cassiola F et al. Platelets actively sequester angiogenesis regulators. Blood 2009; 113(12): 2835–2842.
42. Klement G, Shai E, Varon D. The role of platelets in angiogenesis. In: Michelson A, editor. Platelets. 3rd ed. San Diego, CA: Elsevier/Academic Press 2012.
43. Semple JW, Italiano JE Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11(4): 264–274.
44. Mohle R, Green D, Moore MA et al. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. P Natl Acad Sci USA 1997; 94(2): 663–668.
45. Peterson JE, Zurakowski D, Italiano JE et al. Normal ranges of angiogenesis regulatory proteins in human platelets. Am J Hematol 2010; 85(7): 487–493.
46. Gerhardt H. VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 2008; 4(4): 241–246.
47. Mannaioni PF, Di Bello MG, Masini E. Platelets and inflammation: role of platelet-derived growth factor, adhesion molecules and histamine. Inflamm Res 1997; 46(1): 4–18.
48. Heldin CH. Simultaneous induction of stimulatory and inhibitory signals by PDGF. FEBS Lett 1997; 410(1): 17–21.
49. Brunner G, Nguyen H, Gabrilove J et al. Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells. Blood 1993; 81(3): 631–638.
50. Nakamura T, Kasai K, Banba N et al. Release of human epidermal growth factor from platelets in accordance with aggregation in vitro. Endocrinol Jpn 1989; 36(1): 23–28.
51. Viloria-Petit A, Crombet T, Jothy S et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 2001; 61(13): 5090–5101.
52. Lee YM, Bae HM, Lee OH. Synergistic induction of in vivo angiogenesis by the combination of insulin-like growth factor-II and epidermal growth factor. Oncol Rep 2004; 12(4): 843–848.
53. Nakamura Y, Morishita R, Higaki J et al. Expression of local hepatocyte growth factor system in vascular tissues. Biochem Bioph Res Co 1995; 215(2): 483–488.
54. Shima N, Itagaki Y, Nagao M et al. A fibroblast-derived tumor cytotoxic factor/F-TCF (hepatocyte growth factor//HGF) has multiple functions in vitro. Cell Biol Int Rep 1991; 15(5): 397–408.
55. Tomita N, Morishita R, Taniyama Y et al. Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-1. Circulation 2003; 107(10): 1411–1417.
56. Karey KP, Sirbasku DA. Human platelet-derived mitogens, II: subcellular localization of insulin like growth factor I to the alpha-granule and release in response to thrombin. Blood 1989; 74: 1093–1100.
57. Chan K, Spencer EM. Megakaryocytes endocytose insulin-like growth factor (IGF) I and IGF-binding protein-3: a novel mechanism directing them into alpha granules of platelets. Endocrinol 1998; 139: 559–565.
58. Shigematsu S, Yamauchi K, Nakajima K et al. IGF-1 regulates migration and angiogenesis of human endothelial cells. Endocr J 1999; 46 (Suppl): S59–S52.
59. Nicosia RF, Nicosia SV, Smith M. Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol 1994; 145(5): 1023–1029.
60. Caine GJ, Lip GY, Blann AD. Platelet-derived VEGF, Flt-1, angiopoietin-1 and P-selectin in breast and prostate cancer: further evidence for a role of platelets in tumour angiogenesis. Ann Med 2004; 36(4): 273–277.
61. Li JJ, Huang YQ, Basch R et al. Thrombin induces the release of angiopoietin-1 from platelets. Thromb Haemost 2001; 85(2): 204–206.
62. Moore MA, Hattori K, Heissig B. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann NY Acad Sci 2001; 938: 36–45.
63. Deregibus MC, Buttiglieri S, Russo S. CD40-dependent activation of phosphatidylinositol 3-kinase/Akt pathway mediates endothelial cell survival and in vitro angiogenesis. J Biol Chem 2003; 278(20): 18008–18014.
64. Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opon Cell Biol 2004; 16(5): 558–564.
65. Brindley DN. Lipid phosphate phosphatases and related proteins: signaling functions in development, cell division, and cancer. J Cell Biochem 2004; 92(5): 900–912.
66. Markiewicz M, Nakerakanti SS, Kapanadze B. Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells. Microcirculation 2011; 18(1): 1–11.
67. Cicha I, Yilmaz A, Suzuki Y. Connective tissue growth factor is released from platelets under high shear stress and is differentially expressed in endothelium along atherosclerotic plaques. Clinical Hemorheol Micro 2006; 35(1–2): 203–206.
68. Yang F, Tuxhorn JA, Ressler SJ et al. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res 2005; 65: 8887–8895.
69. Jurasz P, Alonso D, Castro-Blanco S et al. Generation and role of angiostatin in human platelets. Blood 2003; 102: 3217–3223.
70. O‘Reilly MS, Holmgren L, Shing Y et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–328.
71. O‘Reilly MS, Holmgren L, Chen C et al. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996; 2: 689–692.
72. Jaffe EA, Leung LL, Nachman RL et al. Thrombospondin is the endogenous lectin of human platelets. Nature 1982; 295(5846): 246–248.
73. Jiménez B, Volpert OV, Crawford SE et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000; 6(1): 41–48.
74. Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med 2012; 2(5): a006627.
75. Gupta K, Gupta P, Wild R et al. Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis 1999; 3(2): 147–158.
76. Dardik R, Solomon A, Loscalzo J et al. Novel proangiogenic effect of factor XIII associated with suppression of thrombospondin 1 expression. Arterioscler Thromb Vasc Biol 2003; 23(8): 1472–1477.
77. Dawson DW, Volpert OV, Pearce SF et al. Three distinct D-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat. Mol Pharmacol 1999; 55(2): 332–338.
78. Kowalska MA, Rauova L, Poncz M. Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. Thromb Res 2010; 125(4): 292–296.
79. Bikfalvi A. Platelet factor 4: an inhibitor of angiogenesis. Semin Thromb Hemost 2004; 30(3): 379–385.
80. Chadderton NS, Stringer SE. Interaction of platelet factor 4 with fibroblast growth factor 2 is stabilised by heparan sulphate. Int J Biochem Cell Biol 2003; 35(7): 1052–1055.
81. Kim SH, Kiick KL. Heparin-mimetic sulfated peptides with modulated affinities for heparin-binding peptides and growth factors. Peptides 2007; 28(11): 2125–2136.
82. Hagedorn M, Zilberberg L, Wilting J et al. Domain swapping in a COOH-terminal fragment of platelet factor 4 generates potent angiogenesis inhibitors. Cancer Res 2002; 62(23): 6884–6890.
83. Vandercappellen J, Liekens S, Bronckaers A et al. The COOH-terminal peptide of platelet factor-4 variant (CXCL4L1/PF-4var47-70) strongly inhibits angiogenesis and suppresses B16 melanoma growth in vivo. Mol Cancer Res 2010; 8(3): 322–334.
84. Xu HL, Tan HN, Wang FS et al. Research advances of endostatin and its short internal fragments. Curr Protein Pept Sci 2008; 9(3): 275–283.
85. Radomski A, Jurasz P, Sanders EJ et al. Identification, regulation and role of tissue inhibitor of metalloproteinases-4 (TIMP-4) in human platelets. Br J Pharmacol 2002; 137(8): 1330–1338.
86. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315(26): 1650–1659.
87. Dvorak HF, Harvey VS, Estrella P et al. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab Invest 1987; 57(6): 673–686.
88. Nagy JA, Brown LF, Senger DR et al. Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta 1989; 948(3): 305–326.
89. Rak J, Yu JL, Klement G et al. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc 2000; 5(1): 24–33.
90. Rak J, Yu JL, Kerbel RS et al. What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors? Cancer Res 2002; 62(7): 1931–1934.
91. Rak J, Klement G. Impact of oncogenes and tumor suppressor genes on deregulation of hemostasis and angiogenesis in cancer. Cancer Metastasis Rev 2000; 19(1–2): 93–96.
92. Rak J, Filmus J, Finkenzeller G et al. Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev 1995; 14(4): 263–277.
93. Cervi D, Yip TT, Bhattacharya N et al. Platelet-associated PF-4 as a biomarker of early tumor growth. Blood 2008; 111(3): 1201–1207.
94. Almog NK, Klement GL. Platelet Proteome and Tumor Dormancy: Can Platelets Content Serve as Predictive Biomarkers for Exit of Tumors from Dormancy? Cancers 2010; 2(2): 842–858.
95. Ellis LM, Fidler IJ. Angiogenesis and metastasis. Eur J Cancer 1996; 32A(14): 2451–2460.
96. Mehta P. Potential role of platelets in the pathogenesis of tumor metastasis. Blood 1984; 63(1): 55–63.
97. Yahalom J, Eldor A, Biran S et al. Platelet-tumor cell interaction with the subendothelial extracellular matrix: relationship to cancer metastasis. Radiother Oncol 1985; 3(3): 211–225.
98. Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 2006; 10(5): 355–362.
99. Daly ME, Makris A, Reed M et al. Hemostatic regulators of tumor angiogenesis: a source of antiangiogenic agents for cancer treatment? J Natl Cancer Inst 2003; 95(22): 1660–1673.
100. Ibele G, Kay N, Johnson G et al. Human platelets exert cytotoxic effects on tumor cells. Blood 1985; 65(5): 1252–1255.
101. Wang Y, Zhang H. Platelet-induced inhibition of tumor cell growth. Thromb Res 2008; 123(2): 324–330.
102. Erpenbeck L, Nieswandt B, Schon M et al. Inhibition of platelet GPIb alpha and promotion of melanoma metastasis. J Invest Dermatol 2010; 130(2): 576–586.
103. Bikfalvi A. Platelet factor 4: an inhibitor of angiogenesis. Semin Thromb Hemos 2004; 30(3): 379–385.
104. Kolber DL, Knisely TL, Maione TE. Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. J Natl Cancer Inst 1995; 87(4): 304–309.
105. Vandercappellen J, Van Damme J, Struyf S. The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. Cytokine Growth Factor Rev 2011; 22(1): 1–18.
106. Vandercappellen J, Liekens S, Bronckaers A et al. The COOH-terminal peptide of platelet factor-4 variant (CXCL4L1/PF-4var47-70) strongly inhibits angiogenesis and suppresses B16 melanoma growth in vivo. Mol Cancer Res 2010; 8(3): 322–334.
107. Hagedorn M, Zilberberg L, Wilting J et al. Domain swapping in a COOH-terminal fragment of platelet factor 4 generates potent angiogenesis inhibitors. Cancer Res 2002; 62(23): 6884–6890.
108. Maione TE, Gray GS, Petro J et al. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990; 247(4938): 77–79.
109. Yamaguchi K, Ogawa K, Katsube T et al. Platelet factor 4 gene transfection into tumor cells inhibits angiogenesis, tumor growth and metastasis. Anticancer Res 2005; 25(2A): 847–851.
110. Tuszynski GP, Nicosia RF. The role of thrombospondin-1 in tumor progression and angiogenesis. Bioessays 1996; 18(1): 71–76.
111. Tuszynski GP, Gasic TB, Rothman VL et al. Thrombospondin, a potentiator of tumor cell metastasis. Cancer Res 1987; 47(15): 4130–4133.
112. Walz DA. Thrombospondin as a mediator of cancer cell adhesion in metastasis. Cancer Metastasis Rev 1992; 11(3–4): 313–324.
113. Italiano JE Jr, Richardson JL, Patel-Hett S et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 2008; 111(3): 1227–1233.
114. Benoy I, Salgado R, Colpaert C et al. Serum interleukin 6, plasma VEGF, serum VEGF, and VEGF platelet load in breast cancer patients. Clin Breast Cancer 2002; 2(4): 311–315.
115. Caine GJ, Lip GY, Blann AD. Platelet-derived VEGF, Flt-1, angiopoietin-1 and P-selectin in breast and prostate cancer: further evidence for a role of platelets in tumour angiogenesis. Ann Med 2004; 36(4): 273–277.
116. Lee JK, Hong YJ, Han CJ et al. Clinical usefulness of serum and plasma vascular endothelial growth factor in cancer patients: which is the optimal specimen? Int J Oncol 2000; 17(1): 149–152.
117. Werther K, Christensen IJ, Nielsen HJ. Prognostic impact of matched preoperative plasma and serum VEGF in patients with primary colorectal carcinoma. Br J Cancer 2002; 86(3): 417–423.
118. Battinelli EM, Markens BA, Italiano JE Jr. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 2011; 118(5): 1359–1369.
119. Ma L, Elliott SN, Cirino G et al. Platelets modulate gastric ulcer healing: role of endostatin and vascular endothelial growth factor release. Proc Natl Acad Sci U S A 2001; 98(11): 6470–6475.
120. Ma L, Hollenberg MD, Wallace JL. Thrombin-induced platelet endostatin release is blocked by a proteinase activated receptor-4 (PAR4) antagonist. Br J Pharmacology 2001; 134(4): 701–704.
121. Ma L, Perini R, McKnight W et al. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci U S A 2005; 102(1): 216–220.
122. Perini R, Wallace JL, Ma L. Roles of platelets and proteinase-activated receptors in gastric ulcer healing. Dig Dis Sci 2005; 50 (Suppl 1): S12–S15.
123. Etulain J, Lapponi MJ, Patrucchi SJ et al. Hyperthermia inhibits platelet hemostatic functions and selectively regulates the release of alpha-granule proteins. J Thromb Haemostasis 2011; 9(8): 1562–1571.
124. Etulain J, Negrotto S, Carestia A et al. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets. J Thromb Haemost 2011; 107(1): 99–110.
125. Akerblom B, Lindahl TL, Larsson A. ADP activation induces bFGF binding to platelets in vitro. Ups J Med Sci 2002; 107(3): 165–171.
126. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev 2006; 20(1): 1–26.
127. Helley D, Banu E, Bouziane A et al. Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. Eur Urol 2009; 56(3): 479–484.
128. Kim HK, Song KS, Chung JH et al. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004; 3: 376–384.
129. Hayon Y, Dashevsky O, Shai E et al. Platelet microparticles promote neural stem cell proliferation, survival and differentiation. J Mol Neurosci 2012; 47(3): 659–665.
130. Janowska-Wieczorek A, Marquez-Curtis LA, Wysoczynski M et al. Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion 2006; 46(7): 1199–1209.
131. Kim HK, Song KS, Park YS et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 2003; 39(2): 184–191.
132. Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005; 113(5): 752–760.
133. Dashevsky O, Varon D, Brill A. Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. Int J Cancer 2009; 124(8): 1773–1777.
Štítky
Detská onkológia Chirurgia všeobecná OnkológiaČlánok vyšiel v časopise
Klinická onkologie
2012 Číslo Supplementum 2
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
- Kombinace metamizol/paracetamol v léčbě pooperační bolesti u zákroků v rámci jednodenní chirurgie
- Tramadol a paracetamol v tlumení poextrakční bolesti
Najčítanejšie v tomto čísle
- p63 – důležitý hráč ve vývoji epidermálních struktur a nádorových onemocnění
- Zvýšený počet NKT-like buněk u pacientů se solidními nádory
- Role molekulárních chaperonů a ko-chaperonů v biologii nádorů
- Fáze I klinických studií v onkologii – teorie a praxe