Ancient and Recent Adaptive Evolution of Primate Non-Homologous End Joining Genes
In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ) pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to characterize the molecular evolution of the human NHEJ pathway, we generated large simian primate sequence datasets for NHEJ genes. Codon-based models of gene evolution yielded statistical support for the recurrent positive selection of five NHEJ genes during primate evolution: XRCC4, NBS1, Artemis, POLλ, and CtIP. Analysis of human polymorphism data using the composite of multiple signals (CMS) test revealed that XRCC4 has also been subjected to positive selection in modern humans. Crystal structures are available for XRCC4, Nbs1, and Polλ; and residues under positive selection fall exclusively on the surfaces of these proteins. Despite the positive selection of such residues, biochemical experiments with variants of one positively selected site in Nbs1 confirm that functions necessary for DNA repair and checkpoint signaling have been conserved. However, many viruses interact with the proteins of the NHEJ pathway as part of their infectious lifecycle. We propose that an ongoing evolutionary arms race between viruses and NHEJ genes may be driving the surprisingly rapid evolution of these critical genes.
Vyšlo v časopise:
Ancient and Recent Adaptive Evolution of Primate Non-Homologous End Joining Genes. PLoS Genet 6(10): e32767. doi:10.1371/journal.pgen.1001169
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001169
Souhrn
In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ) pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to characterize the molecular evolution of the human NHEJ pathway, we generated large simian primate sequence datasets for NHEJ genes. Codon-based models of gene evolution yielded statistical support for the recurrent positive selection of five NHEJ genes during primate evolution: XRCC4, NBS1, Artemis, POLλ, and CtIP. Analysis of human polymorphism data using the composite of multiple signals (CMS) test revealed that XRCC4 has also been subjected to positive selection in modern humans. Crystal structures are available for XRCC4, Nbs1, and Polλ; and residues under positive selection fall exclusively on the surfaces of these proteins. Despite the positive selection of such residues, biochemical experiments with variants of one positively selected site in Nbs1 confirm that functions necessary for DNA repair and checkpoint signaling have been conserved. However, many viruses interact with the proteins of the NHEJ pathway as part of their infectious lifecycle. We propose that an ongoing evolutionary arms race between viruses and NHEJ genes may be driving the surprisingly rapid evolution of these critical genes.
Zdroje
1. LieberMR
2008 The mechanism of human nonhomologous DNA end joining. J Biol Chem 283 1 5
2. SawyerSL
MalikHS
2006 Positive selection of yeast nonhomologous end-joining genes and a retrotransposon conflict hypothesis. P Natl Acad Sci USA 103 17614 17619
3. BarreiroLB
LavalG
QuachH
PatinE
Quintana-MurciL
2008 Natural selection has driven population differentiation in modern humans. Nat Genet 40 340 345
4. BustamanteCD
Fledel-AlonA
WilliamsonS
NielsenR
HubiszMT
2005 Natural selection on protein-coding genes in the human genome. Nature 437 1153 1157
5. MikkelsenTS
HillierLW
EichlerEE
ZodyMC
JaffeDB
2005 Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437 69 87
6. ClarkAG
GlanowskiS
NielsenR
ThomasPD
KejariwalA
2003 Inferring Nonneutral Evolution from Human-Chimp-Mouse Orthologous Gene Trios. Science 302 1960 1963
7. KosiolC
VinarT
da FonsecaRR
HubiszMJ
BustamanteCD
2008 Patterns of Positive Selection in Six Mammalian Genomes. PLoS Genet 4 e1000144 doi:10.1371/journal.pgen.1000144
8. SabetiPC
SchaffnerSF
FryB
LohmuellerJ
VarillyP
2006 Positive natural selection in the human lineage. Science 312 1614 1620
9. SabetiPC
VarillyP
FryB
LohmuellerJ
HostetterE
2007 Genome-wide detection and characterization of positive selection in human populations. Nature 449 913 918
10. VoightBF
KudaravalliS
WenXQ
PritchardJK
2006 A map of recent positive selection in the human genome. PLoS Biol 4 e72 doi:10.1371/journal.pbio.0040072
11. PâquesF
HaberJE
1999 Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae. Microbiol Mol Biol R 63 349 404
12. RothC
LiberlesDA
2006 A systematic search for positive selection in higher plants (Embryophytes). BMC Plant Biol 6
13. BloomJD
DrummondDA
ArnoldFH
WilkeCO
2006 Structural determinants of the rate of protein evolution in yeast. Mol Biol Evol 23 1751 1761
14. BustamanteCD
TownsendJP
HartlDL
2000 Solvent accessibility and purifying selection within proteins of Escherichia coli and Salmonella enterica. Mol Biol Evol 17 301 308
15. BishopJG
DeanAM
Mitchell-OldsT
1999 Rapid evolution in plant chitinases: Molecular targets of selection in plant-pathogen coevolution. P Natl Acad Sci USA 97 5322 5327
16. YangZ
SwansonWJ
2002 Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 19 49 57
17. BishopJG
RipollDR
BashirS
DamascenoCMB
SeedsJD
2005 Selection on glycine beta-1,3-endoglucanase genes differentially inhibited by a phytophthora glucanase inhibitor protein. Genetics 169 1009 1019
18. IvarssonY
MackeyAJ
EdalatM
PearsonWR
MannervikB
2003 Identification of residues in glutathione transferase capable of driving functional diversification in evolution - A novel approach to protein redesign. J Biol Chem 278 8733 8738
19. SawyerSL
WuLI
EmermanM
MalikHS
2005 Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. P Natl Acad Sci USA 102 2832 2837
20. ClarkNL
SwansonWJ
2005 Pervasive adaptive evolution in primate seminal proteins. PLoS Genet 1 e35 doi:10.1371/journal.pgen.0010035
21. EldeNC
ChildSJ
GeballeAP
MalikHS
2009 Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature 457 485 489
22. SwansonWJ
VacquierVD
1998 Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein. Science 281 710 712
23. OliverPL
GoodstadtL
BayesJJ
BirtleZ
RoachKC
2009 Accelerated Evolution of the Prdm9 Speciation Gene across Diverse Metazoan Taxa. PLoS Genet 5 e1000753 doi:10.1371/journal.pgen.1000753
24. MalikHS
HenikoffS
2001 Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157 1293 1298
25. ParmleyJL
HurstLD
2007 How common are intragene windows with KA>KS owing to purifying selection on synonymous mutations? J Mol Evol 64 646 655
26. HurstLD
2002 The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18 486 487
27. SchmidK
YangZ
2008 The trouble with sliding windows and the selective pressure in BRCA1. PLoS ONE 3 e3746 doi:10.1371/journal.pone.0003746
28. SawyerSL
EmermanM
MalikHS
2004 Ancient Adaptive Evolution of the Primate Antiviral DNA-Editing Enzyme APOBEC3G. PLoS Biol 2 e275 doi:10.1371/journal.pbio.0020275
29. PavlicekA
JurkaJ
2006 Positive selection on the nonhomologous end-joining factor Cernunnos-XLF in the human lineage. Biol Direct 2 15
30. PurvisA
1995 A composite estimate of primate phylogeny. Philos T Roy Soc B 348 405 421
31. YangZ
1997 PAML: A program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13 555 556
32. YangZH
2002 Inference of selection from multiple species alignments. Curr Opin Genet Dev 12 688 694
33. YangZ
BielawskiJP
2000 Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15 496 503
34. ZhangJZ
NielsenR
YangZH
2005 Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22 2472 2479
35. AnisimovaM
BielawskiJP
YangZ
2002 Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol Biol Evol 19 950 958
36. Garcia-DiazM
BebenekK
GaoGH
PedersenLC
LondonRE
2005 Structure-function studies of DNA polymerase lambda. DNA Repair 4 1358 1367
37. Garcia-DiazM
BebenekK
KrahnJM
PedersenLC
KunkelTA
2006 Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase. Cell 124 331 342
38. SibandaBL
CritchlowSE
BegunJ
PeiXY
JacksonSP
2001 Crystal structure of an Xrcc4-DNA ligase IV complex. Nat Struct Biol 8 1015 1019
39. GrawunderU
ZimmerD
KuleszaP
LieberMR
1998 Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and DNA double-strand break repair in vivo. J Biol Chem 273 24708 24714
40. MizutaR
ChengHL
GaoYJ
AltFW
1997 Molecular genetic characterization of XRCC4 function. Int Immunol 9 1607 1613
41. YurchenkoV
XueZ
SadofskyMJ
2006 SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol 26 1786 1794
42. LeeKJ
JovanovicM
UdayakumarD
BladenCL
DynanWS
2004 Identification of DNA-PKcs phosphorylation sites in XRCC4 and effects of mutations at these sites on DNA end joining in a cell-free system. DNA Repair 3 267 276
43. TsengHC
TsaiMH
ChiuCF
WangCH
ChangNW
2008 Association of XRCC4 codon 247 polymorphism with oral cancer susceptibility in Taiwan. Anticancer Res 28 1687 1691
44. The International HapMap Consortium 2007 A second generation human haplotype map of over 3.1 million SNPs. Nature 449 851 861
45. GrossmanSR
ShylakhterI
KarlssonEK
ByrneEH
MoralesS
2010 A Composite of Multiple Signals Distinguishes Causal Variants in Regions of Positive Selection. Science 327 883 886
46. KelleyJL
TurkheimerK
HaneyM
SwansonWJ
2009 Targeted resequencing of two genes, RAGE and POLL, confirms findings from a genome-wide scan for adaptive evolution and provides evidence for positive selection in additional populations. Hum Mol Genet 18 779 784
47. WilliamsRS
WilliamsJS
TainerJA
2007 Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 85 509 520
48. WilliamsRS
DodsonGE
LimboO
YamadaY
WilliamsJS
2009 Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to Coordinate DNA Double-Strand Break Processing and Repair. Cell 139 87 99
49. LuMX
LuJC
YangXB
YangM
TanH
2009 Association between the NBS1 E185Q polymorphism and cancer risk: a meta-analysis. BMC Cancer 9
50. MedinaPP
AhrendtSA
PollanM
FernandezP
SidranskyD
2003 Screening of homologous recombination gene polymorphisms in lung cancer patients reveals an association of the NBS1-185GIn variant and p53 gene mutations. Cancer Epidem Biomar 12 699 704
51. MargulisV
LinJ
YangHS
WangW
WoodCG
2008 Genetic susceptibility to renal cell carcinoma: The role of DNA double-strand break repair pathway. Cancer Epidem Biomar 17 2366 2373
52. ThirumaranRK
BermejoJL
RudnaiP
GurzauE
KoppovaK
2006 Single nucleotide polymorphisms in DNA repair genes and basal cell carcinoma of skin. Carcinogenesis 27 1676 1681
53. ChapmanJR
JacksonSP
2008 Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep 9 795 801
54. SpycherC
MillerES
TownsendK
PavicL
MorriceNA
2008 Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin. J Cell Biol 181 227 240
55. MelanderF
Bekker-JensenS
FalckJ
BartekJ
MailandN
2008 Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J Cell Biol 181 213 226
56. WuLM
LuoKT
LouZK
ChenJJ
2008 MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. P Natl Acad Sci USA 105 11200 11205
57. LeeJH
PaullTT
2005 ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308 551 554
58. UzielT
LerenthalY
MoyalL
AndegekoY
MittelmanL
2003 Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22 5612 5621
59. MatsuzakiK
ShinoharaA
ShinoharaM
2008 Forkhead-associated domain of yeast Xrs2, a homolog of human Nbs1, promotes nonhomologous end joining through interaction with a ligase IV partner protein, Lif1. Genetics 179 213 225
60. StrackerTH
CarsonCT
WeitzmanMD
2002 Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418 348 352
61. WeitzmanMD
OrnellesDA
2005 Inactivating intracellular antiviral responses during adenovirus infection. Oncogene 24 7686 7696
62. EvansJD
HearingP
2005 Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication. J Virol 79 6207 6215
63. JayaramS
GilsonT
EhrlichES
YuXF
KetnerG
2008 E1B 55k-independent dissociation of the DNA ligase IV/XRCC4 complex by E4 34k during adenovirus infection. Virology 382 163 170
64. BrutonRK
RastiM
MappKL
YoungN
CarterRZ
2007 C-terminal-binding protein interacting protein binds directly to adenovirus early region 1A through its N-terminal region and conserved region 3. Oncogene 26 7467 7479
65. RoyS
VandenbergheLH
KryazhimskiyS
GrantR
CalcedoR
2009 Isolation and Characterization of Adenoviruses Persistently Shed from the Gastrointestinal Tract of Non-Human Primates. PLoS Pathog 5 e1000503 doi:10.1371/journal.ppat.1000503
66. SmithJA
DanielR
2006 Following the path of the virus: the exploitation of host DNA repair mechanisms by retroviruses. ACS Chem Biol 1 217 226
67. LiL
OlveraJM
YoderKE
MitchellRS
ButlerSL
2001 Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 20 3272 3281
68. KilzerJM
StrackerT
BeitzelB
MeekK
WeitzmanM
2003 Roles of host cell factors in circularization of retroviral DNA. Virology 314 460 467
69. DanielR
GregerJG
KatzRA
TaganovKD
WuX
2004 Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J Virol 78 8573 8581
70. DanielR
KatzRA
SkalkaAM
1999 A role for DNA-PK in retroviral DNA integration. Science 284 644 647
71. SmithJA
WangFX
ZhangH
WuKJ
WilliamsKJ
2008 Evidence that the Nijmegen breakage syndrome protein, an early sensor of double-strand DNA breaks (DSB), is involved in HIV-1 post-integration repair by recruiting the ataxia telangiectasia-mutated kinase in a process similar to, but distinct from, cellular DSB repair. Virol J 5
72. StudamireB
GoffSP
2008 Host proteins interacting with the Moloney murine leukemia virus integrase: multiple transcriptional regulators and chromatin binding factors. Retrovirology 5
73. LinC-W
EngelmanA
2003 The Barrier-to-Autointegration Factor Is a component of functional Human Immunodeficiency Virus type 1 preintegration complexes. J Virol 77 5030 5036
74. LauA
KanaarR
JacksonSP
O'ConnorMJ
2004 Suppression of retroviral infection by the RAD52 DNA repair protein. EMBO J 23 3421 3429
75. GibbsRA
RogersJ
KatzeMG
BumgarnerR
WeinstockGM
2007 Evolutionary and biomedical insights from the rhesus macaque genome. Science 316 222 234
76. LilleyCE
SchwartzRA
WeitzmanMD
2007 Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol 15 119 126
77. BaileySG
VerrallE
SchelcherC
RhieA
DohertyAJ
2009 Functional Interaction between Epstein-Barr Virus Replication Protein Zta and Host DNA Damage Response Protein 53BP1. J Virol 83 11116 11122
78. AbbottKL
ArchambaultJ
XiaoH
NguyenBD
RoederRG
2005 Interactions of the HIV-1 tat and RAP74 proteins with the RNA polymerase IICTD phosphatase FCP1. Biochemistry 44 2716 2731
79. NyswanerKM
CheckleyMA
YiM
StephenstRM
GarfinkelDJ
2008 Chromatin-associated genes protect the yeast genome from Ty1 insertional mutagenesis. Genetics 178 197 214
80. DownsJA
JacksonSP
1999 Involvement of DNA end-binding protein Ku in Ty element retrotransposition. Mol Cell Biol 19 6260 6268
81. SuzukiJ
YamaguchiK
KajikawaM
IchiyanagiK
AdachiN
2009 Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet 5 e1000461 doi:10.1371/journal.pgen.1000461
82. PitcherRS
TonkinLM
DaleyJM
PalmbosPL
GreenAJ
2006 Mycobacteriophage exploit NHEJ to facilitate genome circularization. Mol Cell 23 743 748
83. KentWJ
SugnetCW
FureyTS
RoskinKM
PringleTH
2002 The human genome browser at UCSC. Genome Res 12 996 1006
84. ThompsonJD
GibsonTJ
PlewniakF
JeanmouginF
HigginsDG
1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876 4882
85. ComeronJM
1999 K-Estimator: Calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15 763 764
86. SchaffnerSF
FooC
GabrielS
ReichD
DalyMJ
2005 Calibrating a coalescent simulation of human genome sequence variation. Genome Res 15 1576 1583
87. CockerhamCC
WeirBS
1986 Estimation of inbreeding parameters in stratified populations. Ann Hum Genet 50 271 281
88. LeeJH
GoodarziAA
JeggoPA
PaullTT
2010 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO J 29 574 585
89. LeeJH
PaullTT
2004 Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304 93 96
90. BhaskaraV
DupreA
LengsfeldB
HopkinsBB
ChanA
2007 Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes. Mol Cell 25 647 661
91. LeeJH
PaullTT
2006 Purification and biochemical characterization of ataxia-telangiectasia mutated and Mre11/Rad50/Nbs1. Method Enzymol 408 529 539
92. PaullTT
CortezD
BowersB
ElledgeSJ
GellertM
2001 Direct DNA binding by Brca1. P Natl Acad Sci USA 98 6086 6091
93. BrysonK
McGuffinLJ
MarsdenRL
WardJJ
SodhiJS
2005 Protein structure prediction servers at university college london. Nucleic Acids Res 33 W36 W38
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Identification of Targets and Function of Individual MicroRNAs in Mouse Embryonic Stem Cells
- Common Genetic Variants and Modification of Penetrance of -Associated Breast Cancer
- Allele-Specific Down-Regulation of Expression Induced by Retinoids Contributes to Climate Adaptations
- Simultaneous Disruption of Two DNA Polymerases, Polη and Polζ, in Avian DT40 Cells Unmasks the Role of Polη in Cellular Response to Various DNA Lesions