#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Ancient and Recent Adaptive Evolution of Primate Non-Homologous End Joining Genes


In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ) pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to characterize the molecular evolution of the human NHEJ pathway, we generated large simian primate sequence datasets for NHEJ genes. Codon-based models of gene evolution yielded statistical support for the recurrent positive selection of five NHEJ genes during primate evolution: XRCC4, NBS1, Artemis, POLλ, and CtIP. Analysis of human polymorphism data using the composite of multiple signals (CMS) test revealed that XRCC4 has also been subjected to positive selection in modern humans. Crystal structures are available for XRCC4, Nbs1, and Polλ; and residues under positive selection fall exclusively on the surfaces of these proteins. Despite the positive selection of such residues, biochemical experiments with variants of one positively selected site in Nbs1 confirm that functions necessary for DNA repair and checkpoint signaling have been conserved. However, many viruses interact with the proteins of the NHEJ pathway as part of their infectious lifecycle. We propose that an ongoing evolutionary arms race between viruses and NHEJ genes may be driving the surprisingly rapid evolution of these critical genes.


Vyšlo v časopise: Ancient and Recent Adaptive Evolution of Primate Non-Homologous End Joining Genes. PLoS Genet 6(10): e32767. doi:10.1371/journal.pgen.1001169
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001169

Souhrn

In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ) pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to characterize the molecular evolution of the human NHEJ pathway, we generated large simian primate sequence datasets for NHEJ genes. Codon-based models of gene evolution yielded statistical support for the recurrent positive selection of five NHEJ genes during primate evolution: XRCC4, NBS1, Artemis, POLλ, and CtIP. Analysis of human polymorphism data using the composite of multiple signals (CMS) test revealed that XRCC4 has also been subjected to positive selection in modern humans. Crystal structures are available for XRCC4, Nbs1, and Polλ; and residues under positive selection fall exclusively on the surfaces of these proteins. Despite the positive selection of such residues, biochemical experiments with variants of one positively selected site in Nbs1 confirm that functions necessary for DNA repair and checkpoint signaling have been conserved. However, many viruses interact with the proteins of the NHEJ pathway as part of their infectious lifecycle. We propose that an ongoing evolutionary arms race between viruses and NHEJ genes may be driving the surprisingly rapid evolution of these critical genes.


Zdroje

1. LieberMR

2008 The mechanism of human nonhomologous DNA end joining. J Biol Chem 283 1 5

2. SawyerSL

MalikHS

2006 Positive selection of yeast nonhomologous end-joining genes and a retrotransposon conflict hypothesis. P Natl Acad Sci USA 103 17614 17619

3. BarreiroLB

LavalG

QuachH

PatinE

Quintana-MurciL

2008 Natural selection has driven population differentiation in modern humans. Nat Genet 40 340 345

4. BustamanteCD

Fledel-AlonA

WilliamsonS

NielsenR

HubiszMT

2005 Natural selection on protein-coding genes in the human genome. Nature 437 1153 1157

5. MikkelsenTS

HillierLW

EichlerEE

ZodyMC

JaffeDB

2005 Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437 69 87

6. ClarkAG

GlanowskiS

NielsenR

ThomasPD

KejariwalA

2003 Inferring Nonneutral Evolution from Human-Chimp-Mouse Orthologous Gene Trios. Science 302 1960 1963

7. KosiolC

VinarT

da FonsecaRR

HubiszMJ

BustamanteCD

2008 Patterns of Positive Selection in Six Mammalian Genomes. PLoS Genet 4 e1000144 doi:10.1371/journal.pgen.1000144

8. SabetiPC

SchaffnerSF

FryB

LohmuellerJ

VarillyP

2006 Positive natural selection in the human lineage. Science 312 1614 1620

9. SabetiPC

VarillyP

FryB

LohmuellerJ

HostetterE

2007 Genome-wide detection and characterization of positive selection in human populations. Nature 449 913 918

10. VoightBF

KudaravalliS

WenXQ

PritchardJK

2006 A map of recent positive selection in the human genome. PLoS Biol 4 e72 doi:10.1371/journal.pbio.0040072

11. PâquesF

HaberJE

1999 Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae. Microbiol Mol Biol R 63 349 404

12. RothC

LiberlesDA

2006 A systematic search for positive selection in higher plants (Embryophytes). BMC Plant Biol 6

13. BloomJD

DrummondDA

ArnoldFH

WilkeCO

2006 Structural determinants of the rate of protein evolution in yeast. Mol Biol Evol 23 1751 1761

14. BustamanteCD

TownsendJP

HartlDL

2000 Solvent accessibility and purifying selection within proteins of Escherichia coli and Salmonella enterica. Mol Biol Evol 17 301 308

15. BishopJG

DeanAM

Mitchell-OldsT

1999 Rapid evolution in plant chitinases: Molecular targets of selection in plant-pathogen coevolution. P Natl Acad Sci USA 97 5322 5327

16. YangZ

SwansonWJ

2002 Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 19 49 57

17. BishopJG

RipollDR

BashirS

DamascenoCMB

SeedsJD

2005 Selection on glycine beta-1,3-endoglucanase genes differentially inhibited by a phytophthora glucanase inhibitor protein. Genetics 169 1009 1019

18. IvarssonY

MackeyAJ

EdalatM

PearsonWR

MannervikB

2003 Identification of residues in glutathione transferase capable of driving functional diversification in evolution - A novel approach to protein redesign. J Biol Chem 278 8733 8738

19. SawyerSL

WuLI

EmermanM

MalikHS

2005 Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. P Natl Acad Sci USA 102 2832 2837

20. ClarkNL

SwansonWJ

2005 Pervasive adaptive evolution in primate seminal proteins. PLoS Genet 1 e35 doi:10.1371/journal.pgen.0010035

21. EldeNC

ChildSJ

GeballeAP

MalikHS

2009 Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature 457 485 489

22. SwansonWJ

VacquierVD

1998 Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein. Science 281 710 712

23. OliverPL

GoodstadtL

BayesJJ

BirtleZ

RoachKC

2009 Accelerated Evolution of the Prdm9 Speciation Gene across Diverse Metazoan Taxa. PLoS Genet 5 e1000753 doi:10.1371/journal.pgen.1000753

24. MalikHS

HenikoffS

2001 Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157 1293 1298

25. ParmleyJL

HurstLD

2007 How common are intragene windows with KA>KS owing to purifying selection on synonymous mutations? J Mol Evol 64 646 655

26. HurstLD

2002 The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18 486 487

27. SchmidK

YangZ

2008 The trouble with sliding windows and the selective pressure in BRCA1. PLoS ONE 3 e3746 doi:10.1371/journal.pone.0003746

28. SawyerSL

EmermanM

MalikHS

2004 Ancient Adaptive Evolution of the Primate Antiviral DNA-Editing Enzyme APOBEC3G. PLoS Biol 2 e275 doi:10.1371/journal.pbio.0020275

29. PavlicekA

JurkaJ

2006 Positive selection on the nonhomologous end-joining factor Cernunnos-XLF in the human lineage. Biol Direct 2 15

30. PurvisA

1995 A composite estimate of primate phylogeny. Philos T Roy Soc B 348 405 421

31. YangZ

1997 PAML: A program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13 555 556

32. YangZH

2002 Inference of selection from multiple species alignments. Curr Opin Genet Dev 12 688 694

33. YangZ

BielawskiJP

2000 Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15 496 503

34. ZhangJZ

NielsenR

YangZH

2005 Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22 2472 2479

35. AnisimovaM

BielawskiJP

YangZ

2002 Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol Biol Evol 19 950 958

36. Garcia-DiazM

BebenekK

GaoGH

PedersenLC

LondonRE

2005 Structure-function studies of DNA polymerase lambda. DNA Repair 4 1358 1367

37. Garcia-DiazM

BebenekK

KrahnJM

PedersenLC

KunkelTA

2006 Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase. Cell 124 331 342

38. SibandaBL

CritchlowSE

BegunJ

PeiXY

JacksonSP

2001 Crystal structure of an Xrcc4-DNA ligase IV complex. Nat Struct Biol 8 1015 1019

39. GrawunderU

ZimmerD

KuleszaP

LieberMR

1998 Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and DNA double-strand break repair in vivo. J Biol Chem 273 24708 24714

40. MizutaR

ChengHL

GaoYJ

AltFW

1997 Molecular genetic characterization of XRCC4 function. Int Immunol 9 1607 1613

41. YurchenkoV

XueZ

SadofskyMJ

2006 SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol 26 1786 1794

42. LeeKJ

JovanovicM

UdayakumarD

BladenCL

DynanWS

2004 Identification of DNA-PKcs phosphorylation sites in XRCC4 and effects of mutations at these sites on DNA end joining in a cell-free system. DNA Repair 3 267 276

43. TsengHC

TsaiMH

ChiuCF

WangCH

ChangNW

2008 Association of XRCC4 codon 247 polymorphism with oral cancer susceptibility in Taiwan. Anticancer Res 28 1687 1691

44. The International HapMap Consortium 2007 A second generation human haplotype map of over 3.1 million SNPs. Nature 449 851 861

45. GrossmanSR

ShylakhterI

KarlssonEK

ByrneEH

MoralesS

2010 A Composite of Multiple Signals Distinguishes Causal Variants in Regions of Positive Selection. Science 327 883 886

46. KelleyJL

TurkheimerK

HaneyM

SwansonWJ

2009 Targeted resequencing of two genes, RAGE and POLL, confirms findings from a genome-wide scan for adaptive evolution and provides evidence for positive selection in additional populations. Hum Mol Genet 18 779 784

47. WilliamsRS

WilliamsJS

TainerJA

2007 Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 85 509 520

48. WilliamsRS

DodsonGE

LimboO

YamadaY

WilliamsJS

2009 Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to Coordinate DNA Double-Strand Break Processing and Repair. Cell 139 87 99

49. LuMX

LuJC

YangXB

YangM

TanH

2009 Association between the NBS1 E185Q polymorphism and cancer risk: a meta-analysis. BMC Cancer 9

50. MedinaPP

AhrendtSA

PollanM

FernandezP

SidranskyD

2003 Screening of homologous recombination gene polymorphisms in lung cancer patients reveals an association of the NBS1-185GIn variant and p53 gene mutations. Cancer Epidem Biomar 12 699 704

51. MargulisV

LinJ

YangHS

WangW

WoodCG

2008 Genetic susceptibility to renal cell carcinoma: The role of DNA double-strand break repair pathway. Cancer Epidem Biomar 17 2366 2373

52. ThirumaranRK

BermejoJL

RudnaiP

GurzauE

KoppovaK

2006 Single nucleotide polymorphisms in DNA repair genes and basal cell carcinoma of skin. Carcinogenesis 27 1676 1681

53. ChapmanJR

JacksonSP

2008 Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep 9 795 801

54. SpycherC

MillerES

TownsendK

PavicL

MorriceNA

2008 Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin. J Cell Biol 181 227 240

55. MelanderF

Bekker-JensenS

FalckJ

BartekJ

MailandN

2008 Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J Cell Biol 181 213 226

56. WuLM

LuoKT

LouZK

ChenJJ

2008 MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. P Natl Acad Sci USA 105 11200 11205

57. LeeJH

PaullTT

2005 ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308 551 554

58. UzielT

LerenthalY

MoyalL

AndegekoY

MittelmanL

2003 Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22 5612 5621

59. MatsuzakiK

ShinoharaA

ShinoharaM

2008 Forkhead-associated domain of yeast Xrs2, a homolog of human Nbs1, promotes nonhomologous end joining through interaction with a ligase IV partner protein, Lif1. Genetics 179 213 225

60. StrackerTH

CarsonCT

WeitzmanMD

2002 Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418 348 352

61. WeitzmanMD

OrnellesDA

2005 Inactivating intracellular antiviral responses during adenovirus infection. Oncogene 24 7686 7696

62. EvansJD

HearingP

2005 Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication. J Virol 79 6207 6215

63. JayaramS

GilsonT

EhrlichES

YuXF

KetnerG

2008 E1B 55k-independent dissociation of the DNA ligase IV/XRCC4 complex by E4 34k during adenovirus infection. Virology 382 163 170

64. BrutonRK

RastiM

MappKL

YoungN

CarterRZ

2007 C-terminal-binding protein interacting protein binds directly to adenovirus early region 1A through its N-terminal region and conserved region 3. Oncogene 26 7467 7479

65. RoyS

VandenbergheLH

KryazhimskiyS

GrantR

CalcedoR

2009 Isolation and Characterization of Adenoviruses Persistently Shed from the Gastrointestinal Tract of Non-Human Primates. PLoS Pathog 5 e1000503 doi:10.1371/journal.ppat.1000503

66. SmithJA

DanielR

2006 Following the path of the virus: the exploitation of host DNA repair mechanisms by retroviruses. ACS Chem Biol 1 217 226

67. LiL

OlveraJM

YoderKE

MitchellRS

ButlerSL

2001 Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 20 3272 3281

68. KilzerJM

StrackerT

BeitzelB

MeekK

WeitzmanM

2003 Roles of host cell factors in circularization of retroviral DNA. Virology 314 460 467

69. DanielR

GregerJG

KatzRA

TaganovKD

WuX

2004 Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J Virol 78 8573 8581

70. DanielR

KatzRA

SkalkaAM

1999 A role for DNA-PK in retroviral DNA integration. Science 284 644 647

71. SmithJA

WangFX

ZhangH

WuKJ

WilliamsKJ

2008 Evidence that the Nijmegen breakage syndrome protein, an early sensor of double-strand DNA breaks (DSB), is involved in HIV-1 post-integration repair by recruiting the ataxia telangiectasia-mutated kinase in a process similar to, but distinct from, cellular DSB repair. Virol J 5

72. StudamireB

GoffSP

2008 Host proteins interacting with the Moloney murine leukemia virus integrase: multiple transcriptional regulators and chromatin binding factors. Retrovirology 5

73. LinC-W

EngelmanA

2003 The Barrier-to-Autointegration Factor Is a component of functional Human Immunodeficiency Virus type 1 preintegration complexes. J Virol 77 5030 5036

74. LauA

KanaarR

JacksonSP

O'ConnorMJ

2004 Suppression of retroviral infection by the RAD52 DNA repair protein. EMBO J 23 3421 3429

75. GibbsRA

RogersJ

KatzeMG

BumgarnerR

WeinstockGM

2007 Evolutionary and biomedical insights from the rhesus macaque genome. Science 316 222 234

76. LilleyCE

SchwartzRA

WeitzmanMD

2007 Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol 15 119 126

77. BaileySG

VerrallE

SchelcherC

RhieA

DohertyAJ

2009 Functional Interaction between Epstein-Barr Virus Replication Protein Zta and Host DNA Damage Response Protein 53BP1. J Virol 83 11116 11122

78. AbbottKL

ArchambaultJ

XiaoH

NguyenBD

RoederRG

2005 Interactions of the HIV-1 tat and RAP74 proteins with the RNA polymerase IICTD phosphatase FCP1. Biochemistry 44 2716 2731

79. NyswanerKM

CheckleyMA

YiM

StephenstRM

GarfinkelDJ

2008 Chromatin-associated genes protect the yeast genome from Ty1 insertional mutagenesis. Genetics 178 197 214

80. DownsJA

JacksonSP

1999 Involvement of DNA end-binding protein Ku in Ty element retrotransposition. Mol Cell Biol 19 6260 6268

81. SuzukiJ

YamaguchiK

KajikawaM

IchiyanagiK

AdachiN

2009 Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet 5 e1000461 doi:10.1371/journal.pgen.1000461

82. PitcherRS

TonkinLM

DaleyJM

PalmbosPL

GreenAJ

2006 Mycobacteriophage exploit NHEJ to facilitate genome circularization. Mol Cell 23 743 748

83. KentWJ

SugnetCW

FureyTS

RoskinKM

PringleTH

2002 The human genome browser at UCSC. Genome Res 12 996 1006

84. ThompsonJD

GibsonTJ

PlewniakF

JeanmouginF

HigginsDG

1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876 4882

85. ComeronJM

1999 K-Estimator: Calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15 763 764

86. SchaffnerSF

FooC

GabrielS

ReichD

DalyMJ

2005 Calibrating a coalescent simulation of human genome sequence variation. Genome Res 15 1576 1583

87. CockerhamCC

WeirBS

1986 Estimation of inbreeding parameters in stratified populations. Ann Hum Genet 50 271 281

88. LeeJH

GoodarziAA

JeggoPA

PaullTT

2010 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO J 29 574 585

89. LeeJH

PaullTT

2004 Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304 93 96

90. BhaskaraV

DupreA

LengsfeldB

HopkinsBB

ChanA

2007 Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes. Mol Cell 25 647 661

91. LeeJH

PaullTT

2006 Purification and biochemical characterization of ataxia-telangiectasia mutated and Mre11/Rad50/Nbs1. Method Enzymol 408 529 539

92. PaullTT

CortezD

BowersB

ElledgeSJ

GellertM

2001 Direct DNA binding by Brca1. P Natl Acad Sci USA 98 6086 6091

93. BrysonK

McGuffinLJ

MarsdenRL

WardJJ

SodhiJS

2005 Protein structure prediction servers at university college london. Nucleic Acids Res 33 W36 W38

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#