#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Lifespan Extension by Preserving Proliferative Homeostasis in


Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.


Vyšlo v časopise: Lifespan Extension by Preserving Proliferative Homeostasis in. PLoS Genet 6(10): e32767. doi:10.1371/journal.pgen.1001159
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001159

Souhrn

Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.


Zdroje

1. SohalRS

WeindruchR

1996 Oxidative stress, caloric restriction, and aging. Science 273 59 63

2. GuarenteL

PicardF

2005 Calorie restriction—the SIR2 connection. Cell 120 473 482

3. KoubovaJ

GuarenteL

2003 How does calorie restriction work? Genes Dev 17 313 321

4. StadtmanER

2001 Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928 22 38

5. FinkelT

HolbrookNJ

2000 Oxidants, oxidative stress and the biology of ageing. Nature 408 239 247

6. TatarM

BartkeA

AntebiA

2003 The endocrine regulation of aging by insulin-like signals. Science 299 1346 1351

7. KenyonC

2005 The plasticity of aging: insights from long-lived mutants. Cell 120 449 460

8. RussellSJ

KahnCR

2007 Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8 681 691

9. VijgJ

CampisiJ

2008 Puzzles, promises and a cure for ageing. Nature 454 1065 1071

10. PartridgeL

GemsD

2002 Mechanisms of ageing: public or private? Nat Rev Genet 3 165 175

11. GuarenteL

KenyonC

2000 Genetic pathways that regulate ageing in model organisms. Nature 408 255 262

12. KenyonC

2001 A conserved regulatory system for aging. Cell 105 165 168

13. RadtkeF

CleversH

2005 Self-renewal and cancer of the gut: two sides of a coin. Science 307 1904 1909

14. RadtkeF

CleversH

RiccioO

2006 From gut homeostasis to cancer. Curr Mol Med 6 275 289

15. Van ZantG

LiangY

2003 The role of stem cells in aging. Exp Hematol 31 659 672

16. RossiDJ

BryderD

SeitaJ

NussenzweigA

HoeijmakersJ

2007 Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447 725 729

17. NijnikA

WoodbineL

MarchettiC

DawsonS

LambeT

2007 DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447 686 690

18. TothovaZ

KolliparaR

HuntlyBJ

LeeBH

CastrillonDH

2007 FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128 325 339

19. RossiDJ

BryderD

ZahnJM

AhleniusH

SonuR

2005 Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102 9194 9199

20. SharplessNE

DePinhoRA

2007 How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8 703 713

21. WeissmanIL

2000 Stem cells: units of development, units of regeneration, and units in evolution. Cell 100 157 168

22. ReyaT

MorrisonSJ

ClarkeMF

WeissmanIL

2001 Stem cells, cancer, and cancer stem cells. Nature 414 105 111

23. RandoTA

2006 Stem cells, ageing and the quest for immortality. Nature 441 1080 1086

24. RossiDJ

JamiesonCH

WeissmanIL

2008 Stems cells and the pathways to aging and cancer. Cell 132 681 696

25. CasaliA

BatlleE

2009 Intestinal stem cells in mammals and Drosophila. Cell Stem Cell 4 124 127

26. WagersAJ

ConboyIM

2005 Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122 659 667

27. RossiDJ

BryderD

WeissmanIL

2007 Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol 42 385 390

28. CampisiJ

SedivyJ

2009 How does proliferative homeostasis change with age? What causes it and how does it contribute to aging? J Gerontol A Biol Sci Med Sci 64 164 166

29. MiyamotoK

MiyamotoT

KatoR

YoshimuraA

MotoyamaN

2008 FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging. Blood 112 4485 4493

30. TothovaZ

GillilandDG

2007 FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1 140 152

31. MayackSR

ShadrachJL

KimFS

WagersAJ

2010 Systemic signals regulate ageing and rejuvenation of blood stem cell niches. Nature 463 495 500

32. MiyamotoK

ArakiKY

NakaK

AraiF

TakuboK

2007 Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1 101 112

33. MurphyCT

McCarrollSA

BargmannCI

FraserA

KamathRS

2003 Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424 277 283

34. GreerEL

BrunetA

2005 FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24 7410 7425

35. GershmanB

PuigO

HangL

PeitzschRM

TatarM

2007 High-resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO. Physiol Genomics 29 24 34

36. JungerMA

RintelenF

StockerH

WassermanJD

VeghM

2003 The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol 2 20

37. WangMC

BohmannD

JasperH

2005 JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121 115 125

38. BoyleM

WongC

RochaM

JonesDL

2007 Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1 470 478

39. PanL

ChenS

WengC

CallG

ZhuD

2007 Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1 458 469

40. WallenfangMR

NayakR

DiNardoS

2006 Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell 5 297 304

41. ChengJ

TurkelN

HematiN

FullerMT

HuntAJ

2008 Centrosome misorientation reduces stem cell division during ageing. Nature 456 599 604

42. ChoiNH

KimJG

YangDJ

KimYS

YooMA

2008 Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 7 318 334

43. BiteauB

HochmuthCE

JasperH

2008 JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3 442 455

44. SinghSR

LiuW

HouSX

2007 The adult Drosophila Malpighian Tubules are maintained by multipotent stem cells. Cell Stem Cell 1 191 203

45. TakashimaS

MkrtchyanM

Younossi-HartensteinA

MerriamJR

HartensteinV

2008 The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454 651 655

46. FoxDT

SpradlingAC

2009 The Drosophila hindgut lacks constitutively active adult stem cells but proliferates in response to tissue damage. Cell Stem Cell 5 290 297

47. MicchelliCA

PerrimonN

2006 Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439 475 479

48. OhlsteinB

SpradlingA

2006 The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439 470 474

49. OhlsteinB

SpradlingA

2007 Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315 988 992

50. JiangH

PatelPH

KohlmaierA

GrenleyMO

McEwenDG

2009 Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137 1343 1355

51. CroninSJ

NehmeNT

LimmerS

LiegeoisS

PospisilikJA

2009 Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325 340 343

52. BuchonN

BroderickNA

PoidevinM

PradervandS

LemaitreB

2009 Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5 200 211

53. AmcheslavskyA

JiangJ

IpYT

2009 Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4 49 61

54. BuchonN

BroderickNA

ChakrabartiS

LemaitreB

2009 Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23 2333 2344

55. McGuireSE

LePT

OsbornAJ

MatsumotoK

DavisRL

2003 Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302 1765 1768

56. TatarM

KopelmanA

EpsteinD

TuMP

YinCM

2001 A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292 107 110

57. ClancyDJ

GemsD

HarshmanLG

OldhamS

StockerH

2001 Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292 104 106

58. WessellsRJ

FitzgeraldE

CypserJR

TatarM

BodmerR

2004 Insulin regulation of heart function in aging fruit flies. Nat Genet 36 1275 1281

59. BroughtonSJ

PiperMD

IkeyaT

BassTM

JacobsonJ

2005 Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102 3105 3110

60. BohniR

Riesgo-EscovarJ

OldhamS

BrogioloW

StockerH

1999 Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97 865 875

61. BrogioloW

StockerH

IkeyaT

RintelenF

FernandezR

2001 An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11 213 221

62. IkeyaT

GalicM

BelawatP

NairzK

HafenE

2002 Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12 1293 1300

63. OkamotoN

YamanakaN

YagiY

NishidaY

KataokaH

2009 A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Dev Cell 17 885 891

64. SlaidinaM

DelanoueR

GronkeS

PartridgeL

LeopoldP

2009 A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev Cell 17 874 884

65. GiannakouME

GossM

JungerMA

HafenE

LeeversSJ

2004 Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305 361

66. LibinaN

BermanJR

KenyonC

2003 Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115 489 502

67. HwangboDS

GershamB

TuMP

PalmerM

TatarM

2004 Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429 562 566

68. BluherM

KahnBB

KahnCR

2003 Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299 572 574

69. WuQ

ZhangY

XuJ

ShenP

2005 Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proc Natl Acad Sci U S A 102 13289 13294

70. LeeversSJ

WeinkoveD

MacDougallLK

HafenE

WaterfieldMD

1996 The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. Embo J 15 6584 6594

71. LeeT

LuoL

2001 Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24 251 254

72. WuJS

LuoL

2006 A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc 1 2583 2589

73. MathurD

BostA

DriverI

OhlsteinB

2010 A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327 210 213

74. WangMC

BohmannD

JasperH

2003 JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 5 811 816

75. LeeKS

Iijima-AndoK

IijimaK

LeeWJ

LeeJH

2009 JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends lifespan. J Biol Chem 284 29454 29461

76. RadyukSN

KlichkoVI

SpinolaB

SohalRS

OrrWC

2001 The peroxiredoxin gene family in Drosophila melanogaster. Free Radic Biol Med 31 1090 1100

77. PaikJH

KolliparaR

ChuG

JiH

XiaoY

2007 FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128 309 323

78. Pinkston-GosseJ

KenyonC

2007 DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans. Nat Genet 39 1403 1409

79. PinkstonJM

GariganD

HansenM

KenyonC

2006 Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313 971 975

80. ClancyDJ

GemsD

HafenE

LeeversSJ

PartridgeL

2002 Dietary restriction in long-lived dwarf flies. Science 296 319

81. KatewaSD

KapahiP

Dietary restriction and aging, 2009. Aging Cell 9 105 112

82. ZidBM

RogersAN

KatewaSD

VargasMA

KolipinskiMC

2009 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139 149 160

83. KarpacJ

Hull-ThompsonJ

FalleurM

JasperH

2009 JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila. Aging Cell 8 288 295

84. KarpacJ

JasperH

2009 Insulin and JNK: optimizing metabolic homeostasis and lifespan. Trends Endocrinol Metab 20 100 106

85. ManningAM

DavisRJ

2003 Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2 554 565

86. KarinM

GallagherE

2005 From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57 283 295

87. LiuJ

LinA

2005 Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15 36 42

88. HaEM

LeeKA

SeoYY

KimSH

LimJH

2009 Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol 10 949 957

89. HaEM

LeeKA

ParkSH

KimSH

NamHJ

2009 Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity. Dev Cell 16 386 397

90. RyuJH

HaEM

OhCT

SeolJH

BreyPT

2006 An essential complementary role of NF-kappaB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J 25 3693 3701

91. HaEM

OhCT

BaeYS

LeeWJ

2005 A direct role for dual oxidase in Drosophila gut immunity. Science 310 847 850

92. GroverD

FordD

BrownC

HoeN

ErdemA

2009 Hydrogen peroxide stimulates activity and alters behavior in Drosophila melanogaster. PLoS One 4 e7580 doi:10.1371/journal.pone.0007580

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#