Lifespan Extension by Preserving Proliferative Homeostasis in
Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.
Vyšlo v časopise:
Lifespan Extension by Preserving Proliferative Homeostasis in. PLoS Genet 6(10): e32767. doi:10.1371/journal.pgen.1001159
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001159
Souhrn
Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.
Zdroje
1. SohalRS
WeindruchR
1996 Oxidative stress, caloric restriction, and aging. Science 273 59 63
2. GuarenteL
PicardF
2005 Calorie restriction—the SIR2 connection. Cell 120 473 482
3. KoubovaJ
GuarenteL
2003 How does calorie restriction work? Genes Dev 17 313 321
4. StadtmanER
2001 Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928 22 38
5. FinkelT
HolbrookNJ
2000 Oxidants, oxidative stress and the biology of ageing. Nature 408 239 247
6. TatarM
BartkeA
AntebiA
2003 The endocrine regulation of aging by insulin-like signals. Science 299 1346 1351
7. KenyonC
2005 The plasticity of aging: insights from long-lived mutants. Cell 120 449 460
8. RussellSJ
KahnCR
2007 Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8 681 691
9. VijgJ
CampisiJ
2008 Puzzles, promises and a cure for ageing. Nature 454 1065 1071
10. PartridgeL
GemsD
2002 Mechanisms of ageing: public or private? Nat Rev Genet 3 165 175
11. GuarenteL
KenyonC
2000 Genetic pathways that regulate ageing in model organisms. Nature 408 255 262
12. KenyonC
2001 A conserved regulatory system for aging. Cell 105 165 168
13. RadtkeF
CleversH
2005 Self-renewal and cancer of the gut: two sides of a coin. Science 307 1904 1909
14. RadtkeF
CleversH
RiccioO
2006 From gut homeostasis to cancer. Curr Mol Med 6 275 289
15. Van ZantG
LiangY
2003 The role of stem cells in aging. Exp Hematol 31 659 672
16. RossiDJ
BryderD
SeitaJ
NussenzweigA
HoeijmakersJ
2007 Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447 725 729
17. NijnikA
WoodbineL
MarchettiC
DawsonS
LambeT
2007 DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447 686 690
18. TothovaZ
KolliparaR
HuntlyBJ
LeeBH
CastrillonDH
2007 FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128 325 339
19. RossiDJ
BryderD
ZahnJM
AhleniusH
SonuR
2005 Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102 9194 9199
20. SharplessNE
DePinhoRA
2007 How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8 703 713
21. WeissmanIL
2000 Stem cells: units of development, units of regeneration, and units in evolution. Cell 100 157 168
22. ReyaT
MorrisonSJ
ClarkeMF
WeissmanIL
2001 Stem cells, cancer, and cancer stem cells. Nature 414 105 111
23. RandoTA
2006 Stem cells, ageing and the quest for immortality. Nature 441 1080 1086
24. RossiDJ
JamiesonCH
WeissmanIL
2008 Stems cells and the pathways to aging and cancer. Cell 132 681 696
25. CasaliA
BatlleE
2009 Intestinal stem cells in mammals and Drosophila. Cell Stem Cell 4 124 127
26. WagersAJ
ConboyIM
2005 Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122 659 667
27. RossiDJ
BryderD
WeissmanIL
2007 Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol 42 385 390
28. CampisiJ
SedivyJ
2009 How does proliferative homeostasis change with age? What causes it and how does it contribute to aging? J Gerontol A Biol Sci Med Sci 64 164 166
29. MiyamotoK
MiyamotoT
KatoR
YoshimuraA
MotoyamaN
2008 FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging. Blood 112 4485 4493
30. TothovaZ
GillilandDG
2007 FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1 140 152
31. MayackSR
ShadrachJL
KimFS
WagersAJ
2010 Systemic signals regulate ageing and rejuvenation of blood stem cell niches. Nature 463 495 500
32. MiyamotoK
ArakiKY
NakaK
AraiF
TakuboK
2007 Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1 101 112
33. MurphyCT
McCarrollSA
BargmannCI
FraserA
KamathRS
2003 Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424 277 283
34. GreerEL
BrunetA
2005 FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24 7410 7425
35. GershmanB
PuigO
HangL
PeitzschRM
TatarM
2007 High-resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO. Physiol Genomics 29 24 34
36. JungerMA
RintelenF
StockerH
WassermanJD
VeghM
2003 The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol 2 20
37. WangMC
BohmannD
JasperH
2005 JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121 115 125
38. BoyleM
WongC
RochaM
JonesDL
2007 Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1 470 478
39. PanL
ChenS
WengC
CallG
ZhuD
2007 Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1 458 469
40. WallenfangMR
NayakR
DiNardoS
2006 Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell 5 297 304
41. ChengJ
TurkelN
HematiN
FullerMT
HuntAJ
2008 Centrosome misorientation reduces stem cell division during ageing. Nature 456 599 604
42. ChoiNH
KimJG
YangDJ
KimYS
YooMA
2008 Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 7 318 334
43. BiteauB
HochmuthCE
JasperH
2008 JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3 442 455
44. SinghSR
LiuW
HouSX
2007 The adult Drosophila Malpighian Tubules are maintained by multipotent stem cells. Cell Stem Cell 1 191 203
45. TakashimaS
MkrtchyanM
Younossi-HartensteinA
MerriamJR
HartensteinV
2008 The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454 651 655
46. FoxDT
SpradlingAC
2009 The Drosophila hindgut lacks constitutively active adult stem cells but proliferates in response to tissue damage. Cell Stem Cell 5 290 297
47. MicchelliCA
PerrimonN
2006 Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439 475 479
48. OhlsteinB
SpradlingA
2006 The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439 470 474
49. OhlsteinB
SpradlingA
2007 Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315 988 992
50. JiangH
PatelPH
KohlmaierA
GrenleyMO
McEwenDG
2009 Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137 1343 1355
51. CroninSJ
NehmeNT
LimmerS
LiegeoisS
PospisilikJA
2009 Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325 340 343
52. BuchonN
BroderickNA
PoidevinM
PradervandS
LemaitreB
2009 Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5 200 211
53. AmcheslavskyA
JiangJ
IpYT
2009 Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4 49 61
54. BuchonN
BroderickNA
ChakrabartiS
LemaitreB
2009 Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23 2333 2344
55. McGuireSE
LePT
OsbornAJ
MatsumotoK
DavisRL
2003 Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302 1765 1768
56. TatarM
KopelmanA
EpsteinD
TuMP
YinCM
2001 A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292 107 110
57. ClancyDJ
GemsD
HarshmanLG
OldhamS
StockerH
2001 Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292 104 106
58. WessellsRJ
FitzgeraldE
CypserJR
TatarM
BodmerR
2004 Insulin regulation of heart function in aging fruit flies. Nat Genet 36 1275 1281
59. BroughtonSJ
PiperMD
IkeyaT
BassTM
JacobsonJ
2005 Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102 3105 3110
60. BohniR
Riesgo-EscovarJ
OldhamS
BrogioloW
StockerH
1999 Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97 865 875
61. BrogioloW
StockerH
IkeyaT
RintelenF
FernandezR
2001 An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11 213 221
62. IkeyaT
GalicM
BelawatP
NairzK
HafenE
2002 Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12 1293 1300
63. OkamotoN
YamanakaN
YagiY
NishidaY
KataokaH
2009 A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Dev Cell 17 885 891
64. SlaidinaM
DelanoueR
GronkeS
PartridgeL
LeopoldP
2009 A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev Cell 17 874 884
65. GiannakouME
GossM
JungerMA
HafenE
LeeversSJ
2004 Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305 361
66. LibinaN
BermanJR
KenyonC
2003 Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115 489 502
67. HwangboDS
GershamB
TuMP
PalmerM
TatarM
2004 Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429 562 566
68. BluherM
KahnBB
KahnCR
2003 Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299 572 574
69. WuQ
ZhangY
XuJ
ShenP
2005 Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proc Natl Acad Sci U S A 102 13289 13294
70. LeeversSJ
WeinkoveD
MacDougallLK
HafenE
WaterfieldMD
1996 The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. Embo J 15 6584 6594
71. LeeT
LuoL
2001 Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24 251 254
72. WuJS
LuoL
2006 A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc 1 2583 2589
73. MathurD
BostA
DriverI
OhlsteinB
2010 A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327 210 213
74. WangMC
BohmannD
JasperH
2003 JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 5 811 816
75. LeeKS
Iijima-AndoK
IijimaK
LeeWJ
LeeJH
2009 JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends lifespan. J Biol Chem 284 29454 29461
76. RadyukSN
KlichkoVI
SpinolaB
SohalRS
OrrWC
2001 The peroxiredoxin gene family in Drosophila melanogaster. Free Radic Biol Med 31 1090 1100
77. PaikJH
KolliparaR
ChuG
JiH
XiaoY
2007 FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128 309 323
78. Pinkston-GosseJ
KenyonC
2007 DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans. Nat Genet 39 1403 1409
79. PinkstonJM
GariganD
HansenM
KenyonC
2006 Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313 971 975
80. ClancyDJ
GemsD
HafenE
LeeversSJ
PartridgeL
2002 Dietary restriction in long-lived dwarf flies. Science 296 319
81. KatewaSD
KapahiP
Dietary restriction and aging, 2009. Aging Cell 9 105 112
82. ZidBM
RogersAN
KatewaSD
VargasMA
KolipinskiMC
2009 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139 149 160
83. KarpacJ
Hull-ThompsonJ
FalleurM
JasperH
2009 JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila. Aging Cell 8 288 295
84. KarpacJ
JasperH
2009 Insulin and JNK: optimizing metabolic homeostasis and lifespan. Trends Endocrinol Metab 20 100 106
85. ManningAM
DavisRJ
2003 Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2 554 565
86. KarinM
GallagherE
2005 From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57 283 295
87. LiuJ
LinA
2005 Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15 36 42
88. HaEM
LeeKA
SeoYY
KimSH
LimJH
2009 Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol 10 949 957
89. HaEM
LeeKA
ParkSH
KimSH
NamHJ
2009 Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity. Dev Cell 16 386 397
90. RyuJH
HaEM
OhCT
SeolJH
BreyPT
2006 An essential complementary role of NF-kappaB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J 25 3693 3701
91. HaEM
OhCT
BaeYS
LeeWJ
2005 A direct role for dual oxidase in Drosophila gut immunity. Science 310 847 850
92. GroverD
FordD
BrownC
HoeN
ErdemA
2009 Hydrogen peroxide stimulates activity and alters behavior in Drosophila melanogaster. PLoS One 4 e7580 doi:10.1371/journal.pone.0007580
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Identification of Targets and Function of Individual MicroRNAs in Mouse Embryonic Stem Cells
- Common Genetic Variants and Modification of Penetrance of -Associated Breast Cancer
- Allele-Specific Down-Regulation of Expression Induced by Retinoids Contributes to Climate Adaptations
- Simultaneous Disruption of Two DNA Polymerases, Polη and Polζ, in Avian DT40 Cells Unmasks the Role of Polη in Cellular Response to Various DNA Lesions