#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evidence for a Xer/ System for Chromosome Resolution in Archaea


Homologous recombination events between circular chromosomes, occurring during or after replication, can generate dimers that need to be converted to monomers prior to their segregation at cell division. In Escherichia coli, chromosome dimers are converted to monomers by two paralogous site-specific tyrosine recombinases of the Xer family (XerC/D). The Xer recombinases act at a specific dif site located in the replication termination region, assisted by the cell division protein FtsK. This chromosome resolution system has been predicted in most Bacteria and further characterized for some species. Archaea have circular chromosomes and an active homologous recombination system and should therefore resolve chromosome dimers. Most archaea harbour a single homologue of bacterial XerC/D proteins (XerA), but not of FtsK. Therefore, the role of XerA in chromosome resolution was unclear. Here, we have identified dif-like sites in archaeal genomes by using a combination of modeling and comparative genomics approaches. These sites are systematically located in replication termination regions. We validated our in silico prediction by showing that the XerA protein of Pyrococcus abyssi specifically recombines plasmids containing the predicted dif site in vitro. In contrast to the bacterial system, XerA can recombine dif sites in the absence of protein partners. Whereas Archaea and Bacteria use a completely different set of proteins for chromosome replication, our data strongly suggest that XerA is most likely used for chromosome resolution in Archaea.


Vyšlo v časopise: Evidence for a Xer/ System for Chromosome Resolution in Archaea. PLoS Genet 6(10): e32767. doi:10.1371/journal.pgen.1001166
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001166

Souhrn

Homologous recombination events between circular chromosomes, occurring during or after replication, can generate dimers that need to be converted to monomers prior to their segregation at cell division. In Escherichia coli, chromosome dimers are converted to monomers by two paralogous site-specific tyrosine recombinases of the Xer family (XerC/D). The Xer recombinases act at a specific dif site located in the replication termination region, assisted by the cell division protein FtsK. This chromosome resolution system has been predicted in most Bacteria and further characterized for some species. Archaea have circular chromosomes and an active homologous recombination system and should therefore resolve chromosome dimers. Most archaea harbour a single homologue of bacterial XerC/D proteins (XerA), but not of FtsK. Therefore, the role of XerA in chromosome resolution was unclear. Here, we have identified dif-like sites in archaeal genomes by using a combination of modeling and comparative genomics approaches. These sites are systematically located in replication termination regions. We validated our in silico prediction by showing that the XerA protein of Pyrococcus abyssi specifically recombines plasmids containing the predicted dif site in vitro. In contrast to the bacterial system, XerA can recombine dif sites in the absence of protein partners. Whereas Archaea and Bacteria use a completely different set of proteins for chromosome replication, our data strongly suggest that XerA is most likely used for chromosome resolution in Archaea.


Zdroje

1. BlakelyG

MayG

McCullochR

ArciszewskaLK

BurkeM

1993 Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75 351 361

2. BlakelyG

CollomsS

MayG

BurkeM

SherrattD

1991 Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3 789 798

3. ClergetM

1991 Site-specific recombination promoted by a short DNA segment of plasmid R1 and by a homologous segment in the terminus region of the Escherichia coli chromosome. New Biol 3 780 788

4. KuempelPL

HensonJM

DircksL

TecklenburgM

LimDF

1991 dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol 3 799 811

5. CarnoyC

RotenCA

2009 The dif/Xer recombination systems in proteobacteria. PLoS One 4 e6531 doi:10.1371/journal.pone.0006531

6. JensenRB

2006 Analysis of the terminus region of the Caulobacter crescentus chromosome and identification of the dif site. J Bacteriol 188 6016 6019

7. NeilsonL

BlakelyG

SherrattDJ

1999 Site-specific recombination at dif by Haemophilus influenzae XerC. Mol Microbiol 31 915 926

8. SciochettiSA

PiggotPJ

BlakelyGW

2001 Identification and characterization of the dif Site from Bacillus subtilis. J Bacteriol 183 1058 1068

9. ValME

KennedySP

El KarouiM

BonneL

ChevalierF

2008 FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae. PLoS Genet 4 e1000201 doi:10.1371/journal.pgen.1000201

10. YenMR

LinNT

HungCH

ChoyKT

WengSF

2002 oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome. Appl Environ Microbiol 68 2924 2933

11. BlakelyGW

SherrattDJ

1994 Interactions of the site-specific recombinases XerC and XerD with the recombination site dif. Nucleic Acids Res 22 5613 5620

12. AusselL

BarreFX

AroyoM

StasiakA

StasiakAZ

2002 FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108 195 205

13. BarreFX

AroyoM

CollomsSD

HelfrichA

CornetF

2000 FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. Genes Dev 14 2976 2988

14. IpSC

BreguM

BarreFX

SherrattDJ

2003 Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J 22 6399 6407

15. SteinerW

LiuG

DonachieWD

KuempelP

1999 The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol Microbiol 31 579 583

16. BigotS

SalehOA

LesterlinC

PagesC

El KarouiM

2005 KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase. EMBO J 24 3770 3780

17. CorreJ

LouarnJM

2002 Evidence from terminal recombination gradients that FtsK uses replichore polarity to control chromosome terminus positioning at division in Escherichia coli. J Bacteriol 184 3801 3807

18. LevyO

PtacinJL

PeasePJ

GoreJ

EisenMB

2005 Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase. Proc Natl Acad Sci U S A 102 17618 17623

19. PeasePJ

LevyO

CostGJ

GoreJ

PtacinJL

2005 Sequence-directed DNA translocation by purified FtsK. Science 307 586 590

20. SivanathanV

AllenMD

de BekkerC

BakerR

ArciszewskaLK

2006 The FtsK gamma domain directs oriented DNA translocation by interacting with KOPS. Nat Struct Mol Biol 13 965 972

21. YatesJ

ZhekovI

BakerR

EklundB

SherrattDJ

2006 Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase. Mol Microbiol 59 1754 1766

22. Le BourgeoisP

BugarelM

CampoN

Daveran-MingotML

LabonteJ

2007 The unconventional Xer recombination machinery of Streptococci/Lactococci. PLoS Genet 3 e117 doi:10.1371/journal.pgen.0030117

23. HaldenbyS

WhiteMF

AllersT

2009 RecA family proteins in archaea: RadA and its cousins. Biochem Soc Trans 37 102 107

24. SerreMC

DuguetM

2003 Enzymes that cleave and religate DNA at high temperature: the same story with different actors. Prog Nucleic Acid Res Mol Biol 74 37 81

25. KanehisaM

GotoS

KawashimaS

NakayaA

2002 The KEGG databases at GenomeNet. Nucleic Acids Res 30 42 46

26. SherrattDJ

WigleyDB

1998 Conserved themes but novel activities in recombinases and topoisomerases. Cell 93 149 152

27. CaoY

HalletB

SherrattDJ

HayesF

1997 Structure-function correlations in the XerD site-specific recombinase revealed by pentapeptide scanning mutagenesis. J Mol Biol 274 39 53

28. SpiersAJ

SherrattDJ

1997 Relating primary structure to function in the Escherichia coli XerD site-specific recombinase. Mol Microbiol 24 1071 1082

29. SubramanyaHS

ArciszewskaLK

BakerRA

BirdLE

SherrattDJ

1997 Crystal structure of the site-specific recombinase, XerD. EMBO J 16 5178 5187

30. LillestolRK

RedderP

GarrettRA

BruggerK

2006 A putative viral defence mechanism in archaeal cells. Archaea 2 59 72

31. MakarovaKS

GrishinNV

ShabalinaSA

WolfYI

KooninEV

2006 A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1 7

32. ZivanovicY

LopezP

PhilippeH

ForterreP

2002 Pyrococcus genome comparison evidences chromosome shuffling-driven evolution. Nucleic Acids Res 30 1902 1910

33. MyllykallioH

LopezP

Lopez-GarciaP

HeiligR

SaurinW

2000 Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288 2212 2215

34. LopezP

PhilippeH

MyllykallioH

ForterreP

1999 Identification of putative chromosomal origins of replication in Archaea. Mol Microbiol 32 883 886

35. EddySR

1998 Profile hidden Markov models. Bioinformatics 14 755 763

36. LundgrenM

AnderssonA

ChenL

NilssonP

BernanderR

2004 Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc Natl Acad Sci U S A 101 7046 7051

37. RobinsonNP

DionneI

LundgrenM

MarshVL

BernanderR

2004 Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116 25 38

38. HoebekeM

SchbathS

2006 R'MES: Finding Exceptional Motifs, version 3. User guide http://genome.jouy.inra.fr/ssb/rmes

39. SerreMC

LetzelterC

GarelJR

DuguetM

2002 Cleavage properties of an archaeal site-specific recombinase, the SSV1 integrase. J Biol Chem 277 16758 16767

40. HayesF

SherrattDJ

1997 Recombinase binding specificity at the chromosome dimer resolution site dif of Escherichia coli. J Mol Biol 266 525 537

41. CornetF

HalletB

SherrattDJ

1997 Xer recombination in Escherichia coli. Site-specific DNA topoisomerase activity of the XerC and XerD recombinases. J Biol Chem 272 21927 21931

42. ConstantinescoF

ForterreP

KooninEV

AravindL

ElieC

2004 A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res 32 1439 1447

43. QuaiserA

ConstantinescoF

WhiteMF

ForterreP

ElieC

2008 The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius. BMC Mol Biol 9 25

44. ZhangS

WeiT

HouG

ZhangC

LiangP

2008 Archaeal DNA helicase HerA interacts with Mre11 homologue and unwinds blunt-ended double-stranded DNA and recombination intermediates. DNA Repair (Amst) 7 380 391

45. IyerLM

MakarovaKS

KooninEV

AravindL

2004 Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 32 5260 5279

46. CollomsSD

AlenC

SherrattDJ

1998 The ArcA/ArcB two-component regulatory system of Escherichia coli is essential for Xer site-specific recombination at psi. Mol Microbiol 28 521 530

47. CornetF

MortierI

PatteJ

LouarnJM

1994 Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif. J Bacteriol 176 3188 3195

48. StirlingCJ

CollomsSD

CollinsJF

SzatmariG

SherrattDJ

1989 xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J 8 1623 1627

49. StirlingCJ

SzatmariG

StewartG

SmithMC

SherrattDJ

1988 The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. EMBO J 7 4389 4395

50. LundgrenM

BernanderR

2007 Genome-wide transcription map of an archaeal cell cycle. Proc Natl Acad Sci U S A 104 2939 2944

51. ForterreP

1999 Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins. Mol Microbiol 33 457 465

52. ForterreP

2002 The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5 525 532

53. CrooksGE

HonG

ChandoniaJM

BrennerSE

2004 WebLogo: a sequence logo generator. Genome Res 14 1188 1190

54. GuindonS

GascuelO

2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52 696 704

55. KimJ

ZwiebC

WuC

AdhyaS

1989 Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene 85 15 23

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#