#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Cytosine Methyltransferase DRM2 Requires Intact UBA Domains and a Catalytically Mutated Paralog DRM3 during RNA–Directed DNA Methylation in


Eukaryotic DNA cytosine methylation can be used to transcriptionally silence repetitive sequences, including transposons and retroviruses. This silencing is stable between cell generations as cytosine methylation is maintained epigenetically through DNA replication. The Arabidopsis thaliana Dnmt3 cytosine methyltransferase ortholog DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) is required for establishment of small interfering RNA (siRNA) directed DNA methylation. In mammals PIWI proteins and piRNA act in a convergently evolved RNA–directed DNA methylation system that is required to repress transposon expression in the germ line. De novo methylation may also be independent of RNA interference and small RNAs, as in Neurospora crassa. Here we identify a clade of catalytically mutated DRM2 paralogs in flowering plant genomes, which in A.thaliana we term DOMAINS REARRANGED METHYLTRANSFERASE3 (DRM3). Despite being catalytically mutated, DRM3 is required for normal maintenance of non-CG DNA methylation, establishment of RNA–directed DNA methylation triggered by repeat sequences and accumulation of repeat-associated small RNAs. Although the mammalian catalytically inactive Dnmt3L paralogs act in an analogous manner, phylogenetic analysis indicates that the DRM and Dnmt3 protein families diverged independently in plants and animals. We also show by site-directed mutagenesis that both the DRM2 N-terminal UBA domains and C-terminal methyltransferase domain are required for normal RNA–directed DNA methylation, supporting an essential targeting function for the UBA domains. These results suggest that plant and mammalian RNA–directed DNA methylation systems consist of a combination of ancestral and convergent features.


Vyšlo v časopise: The Cytosine Methyltransferase DRM2 Requires Intact UBA Domains and a Catalytically Mutated Paralog DRM3 during RNA–Directed DNA Methylation in. PLoS Genet 6(10): e32767. doi:10.1371/journal.pgen.1001182
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001182

Souhrn

Eukaryotic DNA cytosine methylation can be used to transcriptionally silence repetitive sequences, including transposons and retroviruses. This silencing is stable between cell generations as cytosine methylation is maintained epigenetically through DNA replication. The Arabidopsis thaliana Dnmt3 cytosine methyltransferase ortholog DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) is required for establishment of small interfering RNA (siRNA) directed DNA methylation. In mammals PIWI proteins and piRNA act in a convergently evolved RNA–directed DNA methylation system that is required to repress transposon expression in the germ line. De novo methylation may also be independent of RNA interference and small RNAs, as in Neurospora crassa. Here we identify a clade of catalytically mutated DRM2 paralogs in flowering plant genomes, which in A.thaliana we term DOMAINS REARRANGED METHYLTRANSFERASE3 (DRM3). Despite being catalytically mutated, DRM3 is required for normal maintenance of non-CG DNA methylation, establishment of RNA–directed DNA methylation triggered by repeat sequences and accumulation of repeat-associated small RNAs. Although the mammalian catalytically inactive Dnmt3L paralogs act in an analogous manner, phylogenetic analysis indicates that the DRM and Dnmt3 protein families diverged independently in plants and animals. We also show by site-directed mutagenesis that both the DRM2 N-terminal UBA domains and C-terminal methyltransferase domain are required for normal RNA–directed DNA methylation, supporting an essential targeting function for the UBA domains. These results suggest that plant and mammalian RNA–directed DNA methylation systems consist of a combination of ancestral and convergent features.


Zdroje

1. AravinAA

Bourc'hisD

2008 Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev 22 970 975

2. LawJA

JacobsenSE

2010 Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11 204 220

3. CokusSJ

FengS

ZhangX

ChenZ

MerrimanB

2008 Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452 215 219

4. LippmanZ

GendrelAV

BlackM

VaughnMW

DedhiaN

2004 Role of transposable elements in heterochromatin and epigenetic control. Nature 430 471 476

5. ListerR

O'MalleyRC

Tonti-FilippiniJ

GregoryBD

BerryCC

2008 Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133 523 536

6. TranRK

HenikoffJG

ZilbermanD

DittRF

JacobsenSE

2005 DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr Biol 15 154 159

7. ZhangX

YazakiJ

SundaresanA

CokusS

ChanSW

2006 Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126 1189 1201

8. ZilbermanD

GehringM

TranRK

BallingerT

HenikoffS

2007 Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39 61 69

9. KatoM

MiuraA

BenderJ

JacobsenSE

KakutaniT

2003 Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 13 421 426

10. MirouzeM

ReindersJ

BucherE

NishimuraT

SchneebergerK

2009 Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461 427 430

11. MiuraA

YonebayashiS

WatanabeK

ToyamaT

ShimadaH

2001 Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411 212 214

12. TsukaharaS

KobayashiA

KawabeA

MathieuO

MiuraA

2009 Bursts of retrotransposition reproduced in Arabidopsis. Nature 461 423 426

13. GollMG

BestorTH

2005 Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74 481 514

14. BestorTH

VerdineGL

1994 DNA methyltransferases. Curr Opin Cell Biol 6 380 389

15. CaoX

JacobsenSE

2002 Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12 1138 1144

16. ChanSW

ZilbermanD

XieZ

JohansenLK

CarringtonJC

2004 RNA silencing genes control de novo DNA methylation. Science 303 1336

17. HendersonIR

JacobsenSE

2008 Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev 22 1597 1606

18. AusinI

MocklerTC

ChoryJ

JacobsenSE

2009 IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nat Struct Mol Biol 16 1325 1327

19. El-ShamiM

PontierD

LahmyS

BraunL

PicartC

2007 Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev 21 2539 2544

20. HeXJ

HsuYF

PontesO

ZhuJ

LuJ

2009 NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA–directed DNA methylation. Genes Dev 23 318 330

21. HuangL

JonesAM

SearleI

PatelK

VoglerH

2009 An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat Struct Mol Biol 16 91 93

22. JohnsonLM

LawJA

KhattarA

HendersonIR

JacobsenSE

2008 SRA-domain proteins required for DRM2-mediated de novo DNA methylation. PLoS Genet 4 e1000280

23. KannoT

BucherE

DaxingerL

HuettelB

BohmdorferG

2008 A structural-maintenance-of-chromosomes hinge domain-containing protein is required for RNA–directed DNA methylation. Nat Genet 40 670 675

24. KannoT

HuettelB

MetteMF

AufsatzW

JaligotE

2005 Atypical RNA polymerase subunits required for RNA–directed DNA methylation. Nat Genet 37 761 765

25. KannoT

MetteMF

KreilDP

AufsatzW

MatzkeM

2004 Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA–directed DNA methylation. Curr Biol 14 801 805

26. LahmyS

PontierD

CavelE

VegaD

El-ShamiM

2009 PolV(PolIVb) function in RNA–directed DNA methylation requires the conserved active site and an additional plant-specific subunit. Proc Natl Acad Sci U S A 106 941 946

27. OnoderaY

HaagJR

ReamT

NunesPC

PontesO

2005 Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120 613 622

28. PontierD

YahubyanG

VegaD

BulskiA

Saez-VasquezJ

2005 Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19 2030 2040

29. ZilbermanD

CaoX

JohansenLK

XieZ

CarringtonJC

2004 Role of Arabidopsis ARGONAUTE4 in RNA–directed DNA methylation triggered by inverted repeats. Curr Biol 14 1214 1220

30. Bies-EtheveN

PontierD

LahmyS

PicartC

VegaD

2009 RNA–directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep 10 649 654

31. HeXJ

HsuYF

ZhuS

LiuHL

PontesO

2009 A conserved transcriptional regulator is required for RNA–directed DNA methylation and plant development. Genes Dev 23 2717 2722

32. HeXJ

HsuYF

ZhuS

WierzbickiAT

PontesO

2009 An effector of RNA–directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA–binding protein. Cell 137 498 508

33. HerrAJ

JensenMB

DalmayT

BaulcombeDC

2005 RNA polymerase IV directs silencing of endogenous DNA. Science 308 118 120

34. SmithLM

PontesO

SearleI

YelinaN

YousafzaiFK

2007 An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19 1507 1521

35. CaoX

AufsatzW

ZilbermanD

MetteMF

HuangMS

2003 Role of the DRM and CMT3 methyltransferases in RNA–directed DNA methylation. Curr Biol 13 2212 2217

36. CaoX

JacobsenSE

2002 Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci U S A 99 Suppl 4 16491 16498

37. ChanSW

HendersonIR

ZhangX

ShahG

ChienJS

2006 RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in arabidopsis. PLoS Genet 2 e83

38. KanedaM

OkanoM

HataK

SadoT

TsujimotoN

2004 Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429 900 903

39. OkanoM

BellDW

HaberDA

LiE

1999 DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99 247 257

40. Bourc'hisD

BestorTH

2004 Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431 96 99

41. Bourc'hisD

XuGL

LinCS

BollmanB

BestorTH

2001 Dnmt3L and the establishment of maternal genomic imprints. Science 294 2536 2539

42. GowherH

LiebertK

HermannA

XuG

JeltschA

2005 Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280 13341 13348

43. SuetakeI

MorimotoY

FuchikamiT

AbeK

TajimaS

2006 Stimulation effect of Dnmt3L on the DNA methylation activity of Dnmt3a2. J Biochem 140 553 559

44. KaretaMS

BotelloZM

EnnisJJ

ChouC

ChedinF

2006 Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L. J Biol Chem 281 25893 25902

45. JiaD

JurkowskaRZ

ZhangX

JeltschA

ChengX

2007 Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449 248 251

46. OoiSK

QiuC

BernsteinE

LiK

JiaD

2007 DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448 714 717

47. AravinAA

HannonGJ

2008 Small RNA silencing pathways in germ and stem cells. Cold Spring Harb Symp Quant Biol 73 283 290

48. AravinAA

SachidanandamR

Bourc'hisD

SchaeferC

PezicD

2008 A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31 785 799

49. CarmellMA

GirardA

van de KantHJ

Bourc'hisD

BestorTH

2007 MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12 503 514

50. DengW

LinH

2002 miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2 819 830

51. Kuramochi-MiyagawaS

KimuraT

IjiriTW

IsobeT

AsadaN

2004 Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131 839 849

52. Kuramochi-MiyagawaS

WatanabeT

GotohK

TotokiY

ToyodaA

2008 DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22 908 917

53. FreitagM

LeeDW

KotheGO

PrattRJ

AramayoR

2004 DNA methylation is independent of RNA interference in Neurospora. Science 304 1939

54. CaoX

SpringerNM

MuszynskiMG

PhillipsRL

KaepplerS

2000 Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci U S A 97 4979 4984

55. JeddelohJA

BenderJ

RichardsEJ

1998 The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev 12 1714 1725

56. SazeH

KakutaniT

2007 Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. Embo J 26 3641 3652

57. WooHR

DittmerTA

RichardsEJ

2008 Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. PLoS Genet 4 e1000156

58. LiCF

PontesO

El-ShamiM

HendersonIR

BernatavichuteYV

2006 An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126 93 106

59. SoppeWJ

JacobsenSE

Alonso-BlancoC

JacksonJP

KakutaniT

2000 The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6 791 802

60. HendersonIR

ZhangX

LuC

JohnsonL

MeyersBC

2006 Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38 721 725

61. XieZ

JohansenLK

GustafsonAM

KasschauKD

LellisAD

2004 Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2 E104

62. GasciolliV

MalloryAC

BartelDP

VaucheretH

2005 Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15 1494 1500

63. KozlovG

NguyenL

LinT

De CrescenzoG

ParkM

2007 Structural basis of ubiquitin recognition by the ubiquitin-associated (UBA) domain of the ubiquitin ligase EDD. J Biol Chem 282 35787 35795

64. MuellerTD

FeigonJ

2002 Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions. J Mol Biol 319 1243 1255

65. KimSA

VacratsisPO

FiresteinR

ClearyML

DixonJE

2003 Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Natl Acad Sci U S A 100 4492 4497

66. WillertEK

FitzpatrickR

PhillipsMA

2007 Allosteric regulation of an essential trypanosome polyamine biosynthetic enzyme by a catalytically dead homolog. Proc Natl Acad Sci U S A 104 8275 8280

67. ShabalinaSA

KooninEV

2008 Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23 578 587

68. LiCF

HendersonIR

SongL

FedoroffN

LagrangeT

2008 Dynamic regulation of ARGONAUTE4 within multiple nuclear bodies in Arabidopsis thaliana. PLoS Genet 4 e27

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#