#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Continuous Requirement for the Clr4 Complex But Not RNAi for Centromeric Heterochromatin Assembly in Fission Yeast Harboring a Disrupted RITS Complex


Formation of centromeric heterochromatin in fission yeast requires the combined action of chromatin modifying enzymes and small RNAs derived from centromeric transcripts. Positive feedback mechanisms that link the RNAi pathway and the Clr4/Suv39h1 histone H3K9 methyltransferase complex (Clr-C) result in requirements for H3K9 methylation for full siRNA production and for siRNA production to achieve full histone methylation. Nonetheless, it has been proposed that the Argonaute protein, Ago1, is the key initial trigger for heterochromatin assembly via its association with Dicer-independent “priRNAs.” The RITS complex physically links Ago1 and the H3-K9me binding protein Chp1. Here we exploit an assay for heterochromatin assembly in which loss of silencing by deletion of RNAi or Clr-C components can be reversed by re-introduction of the deleted gene. We showed previously that a mutant version of the RITS complex (Tas3WG) that biochemically separates Ago1 from Chp1 and Tas3 proteins permits maintenance of heterochromatin, but prevents its formation when Clr4 is removed and re-introduced. Here we show that the block occurs with mutants in Clr-C, but not mutants in the RNAi pathway. Thus, Clr-C components, but not RNAi factors, play a more critical role in assembly when the integrity of RITS is disrupted. Consistent with previous reports, cells lacking Clr-C components completely lack H3K9me2 on centromeric DNA repeats, whereas RNAi pathway mutants accumulate low levels of H3K9me2. Further supporting the existence of RNAi–independent mechanisms for establishment of centromeric heterochromatin, overexpression of clr4+ in clr4Δago1Δ cells results in some de novo H3K9me2 accumulation at centromeres. These findings and our observation that ago1Δ and dcr1Δ mutants display indistinguishable low levels of H3K9me2 (in contrast to a previous report) challenge the model that priRNAs trigger heterochromatin formation. Instead, our results indicate that RNAi cooperates with RNAi–independent factors in the assembly of heterochromatin.


Vyšlo v časopise: Continuous Requirement for the Clr4 Complex But Not RNAi for Centromeric Heterochromatin Assembly in Fission Yeast Harboring a Disrupted RITS Complex. PLoS Genet 6(10): e32767. doi:10.1371/journal.pgen.1001174
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001174

Souhrn

Formation of centromeric heterochromatin in fission yeast requires the combined action of chromatin modifying enzymes and small RNAs derived from centromeric transcripts. Positive feedback mechanisms that link the RNAi pathway and the Clr4/Suv39h1 histone H3K9 methyltransferase complex (Clr-C) result in requirements for H3K9 methylation for full siRNA production and for siRNA production to achieve full histone methylation. Nonetheless, it has been proposed that the Argonaute protein, Ago1, is the key initial trigger for heterochromatin assembly via its association with Dicer-independent “priRNAs.” The RITS complex physically links Ago1 and the H3-K9me binding protein Chp1. Here we exploit an assay for heterochromatin assembly in which loss of silencing by deletion of RNAi or Clr-C components can be reversed by re-introduction of the deleted gene. We showed previously that a mutant version of the RITS complex (Tas3WG) that biochemically separates Ago1 from Chp1 and Tas3 proteins permits maintenance of heterochromatin, but prevents its formation when Clr4 is removed and re-introduced. Here we show that the block occurs with mutants in Clr-C, but not mutants in the RNAi pathway. Thus, Clr-C components, but not RNAi factors, play a more critical role in assembly when the integrity of RITS is disrupted. Consistent with previous reports, cells lacking Clr-C components completely lack H3K9me2 on centromeric DNA repeats, whereas RNAi pathway mutants accumulate low levels of H3K9me2. Further supporting the existence of RNAi–independent mechanisms for establishment of centromeric heterochromatin, overexpression of clr4+ in clr4Δago1Δ cells results in some de novo H3K9me2 accumulation at centromeres. These findings and our observation that ago1Δ and dcr1Δ mutants display indistinguishable low levels of H3K9me2 (in contrast to a previous report) challenge the model that priRNAs trigger heterochromatin formation. Instead, our results indicate that RNAi cooperates with RNAi–independent factors in the assembly of heterochromatin.


Zdroje

1. YamadaT

FischleW

SugiyamaT

AllisCD

GrewalSI

2005 The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol Cell 20 173 185

2. BannisterAJ

ZegermanP

PartridgeJF

MiskaEA

ThomasJO

2001 Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410 120 124

3. NakayamaJ

RiceJC

StrahlBD

AllisCD

GrewalSI

2001 Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292 110 113

4. SadaieM

KawaguchiR

OhtaniY

ArisakaF

TanakaK

2008 Balance between distinct HP1 family proteins controls heterochromatin assembly in fission yeast. Mol Cell Biol 28 6973 6988

5. ZhangK

MoschK

FischleW

GrewalSI

2008 Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol 15 381 388

6. SchalchT

JobG

NoffsingerVJ

ShankerS

KuscuC

2009 High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin. Mol Cell 34 36 46

7. PartridgeJF

ScottKS

BannisterAJ

KouzaridesT

AllshireRC

2002 cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr Biol 12 1652 1660

8. VerdelA

JiaS

GerberS

SugiyamaT

GygiS

2004 RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303 672 676

9. DjupedalI

EkwallK

2009 Epigenetics: heterochromatin meets RNAi. Cell Res 19 282 295

10. PartridgeJF

DebeauchampJL

KosinskiAM

UlrichDL

HadlerMJ

2007 Functional separation of the requirements for establishment and maintenance of centromeric heterochromatin. Mol Cell 26 593 602

11. MotamediMR

VerdelA

ColmenaresSU

GerberSA

GygiSP

2004 Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119 789 802

12. BayneEH

WhiteSA

KaganskyA

BijosDA

Sanchez-PulidoL

2010 Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140 666 677

13. SugiyamaT

CamH

VerdelA

MoazedD

GrewalSI

2005 RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc Natl Acad Sci U S A 102 152 157

14. PartridgeJF

2008 Centromeric chromatin in fission yeast. Front Biosci 13 3896 3905

15. VolpeTA

KidnerC

HallIM

TengG

GrewalSI

2002 Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297 1833 1837

16. DjupedalI

PortosoM

SpahrH

BonillaC

GustafssonCM

2005 RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev 19 2301 2306

17. KatoH

GotoDB

MartienssenRA

UranoT

FurukawaK

2005 RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309 467 469

18. SchramkeV

SheedyDM

DenliAM

BonilaC

EkwallK

2005 RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription. Nature 435 1275 1279

19. DjupedalI

Kos-BraunIC

MosherRA

SoderholmN

SimmerF

2009 Analysis of small RNA in fission yeast; centromeric siRNAs are potentially generated through a structured RNA. EMBO J 28 3832 3844

20. HalicM

MoazedD

2010 Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell 140 504 516

21. DebeauchampJL

MosesA

NoffsingerVJ

UlrichDL

JobG

2008 Chp1-Tas3 interaction is required to recruit RITS to fission yeast centromeres and for maintenance of centromeric heterochromatin. Mol Cell Biol 28 2154 2166

22. PetrieVJ

WuitschickJD

GivensCD

KosinskiAM

PartridgeJF

2005 RNA interference (RNAi)-dependent and RNAi-independent association of the Chp1 chromodomain protein with distinct heterochromatic loci in fission yeast. Mol Cell Biol 25 2331 2346

23. TillS

LejeuneE

ThermannR

BortfeldM

HothornM

2007 A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat Struct Mol Biol 14 897 903

24. AllshireRC

NimmoER

EkwallK

JaverzatJP

CranstonG

1995 Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9 218 233

25. LiF

GotoDB

ZaratieguiM

TangX

MartienssenR

2005 Two novel proteins, dos1 and dos2, interact with rik1 to regulate heterochromatic RNA interference and histone modification. Curr Biol 15 1448 1457

26. ThonG

HansenKR

AltesSP

SidhuD

SinghG

2005 The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics 171 1583 1595

27. HornPJ

BastieJN

PetersonCL

2005 A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev 19 1705 1714

28. JiaS

KobayashiR

GrewalSI

2005 Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat Cell Biol 7 1007 1013

29. HongEJ

VillenJ

GeraceEL

GygiSP

MoazedD

2005 A Cullin E3 Ubiquitin Ligase Complex Associates with Rik1 and the Clr4 Histone H3-K9 Methyltransferase and Is Required for RNAi-Mediated Heterochromatin Formation. RNA Biol 2 106 111

30. SadaieM

IidaT

UranoT

NakayamaJ

2004 A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J 23 3825 3835

31. NeuwaldAF

PoleksicA

2000 PSI-BLAST searches using hidden markov models of structural repeats: prediction of an unusual sliding DNA clamp and of beta-propellers in UV-damaged DNA-binding protein. Nucleic Acids Res 28 3570 3580

32. IrvineDV

ZaratieguiM

ToliaNH

GotoDB

ChitwoodDH

2006 Argonaute slicing is required for heterochromatic silencing and spreading. Science 313 1134 1137

33. BuhlerM

HaasW

GygiSP

MoazedD

2007 RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 129 707 721

34. BukerSM

IidaT

BuhlerM

VillenJ

GygiSP

2007 Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast. Nat Struct Mol Biol 14 200 207

35. NomaK

SugiyamaT

CamH

VerdelA

ZofallM

2004 RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet 36 1174 1180

36. HolmbergC

FleckO

HansenHA

LiuC

SlaabyR

2005 Ddb1 controls genome stability and meiosis in fission yeast. Genes Dev 19 853 862

37. IidaT

NakayamaJ

MoazedD

2008 siRNA-mediated heterochromatin establishment requires HP1 and is associated with antisense transcription. Mol Cell 31 178 189

38. SimmerF

BuscainoA

Kos-BraunIC

KaganskyA

BoukabaA

2010 Hairpin RNA induces secondary small interfering RNA synthesis and silencing in trans in fission yeast. EMBO Rep 11 112 118

39. HampseyM

ReinbergD

2003 Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 113 429 432

40. MatzkeM

KannoT

DaxingerL

HuettelB

MatzkeAJ

2009 RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21 367 376

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#