#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Comprehensive Analysis Reveals Dynamic and Evolutionary Plasticity of Rab GTPases and Membrane Traffic in


Cellular sophistication is not exclusive to multicellular organisms, and unicellular eukaryotes can resemble differentiated animal cells in their complex network of membrane-bound structures. These comparisons can be illuminated by genome-wide surveys of key gene families. We report a systematic analysis of Rabs in a complex unicellular Ciliate, including gene prediction and phylogenetic clustering, expression profiling based on public data, and Green Fluorescent Protein (GFP) tagging. Rabs are monomeric GTPases that regulate membrane traffic. Because Rabs act as compartment-specific determinants, the number of Rabs in an organism reflects intracellular complexity. The Tetrahymena Rab family is similar in size to that in humans and includes both expansions in conserved Rab clades as well as many divergent Rabs. Importantly, more than 90% of Rabs are expressed concurrently in growing cells, while only a small subset appears specialized for other conditions. By localizing most Rabs in living cells, we could assign the majority to specific compartments. These results validated most phylogenetic assignments, but also indicated that some sequence-conserved Rabs were co-opted for novel functions. Our survey uncovered a rare example of a nuclear Rab and substantiated the existence of a previously unrecognized core Rab clade in eukaryotes. Strikingly, several functionally conserved pathways or structures were found to be associated entirely with divergent Rabs. These pathways may have permitted rapid evolution of the associated Rabs or may have arisen independently in diverse lineages and then converged. Thus, characterizing entire gene families can provide insight into the evolutionary flexibility of fundamental cellular pathways.


Vyšlo v časopise: Comprehensive Analysis Reveals Dynamic and Evolutionary Plasticity of Rab GTPases and Membrane Traffic in. PLoS Genet 6(10): e32767. doi:10.1371/journal.pgen.1001155
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001155

Souhrn

Cellular sophistication is not exclusive to multicellular organisms, and unicellular eukaryotes can resemble differentiated animal cells in their complex network of membrane-bound structures. These comparisons can be illuminated by genome-wide surveys of key gene families. We report a systematic analysis of Rabs in a complex unicellular Ciliate, including gene prediction and phylogenetic clustering, expression profiling based on public data, and Green Fluorescent Protein (GFP) tagging. Rabs are monomeric GTPases that regulate membrane traffic. Because Rabs act as compartment-specific determinants, the number of Rabs in an organism reflects intracellular complexity. The Tetrahymena Rab family is similar in size to that in humans and includes both expansions in conserved Rab clades as well as many divergent Rabs. Importantly, more than 90% of Rabs are expressed concurrently in growing cells, while only a small subset appears specialized for other conditions. By localizing most Rabs in living cells, we could assign the majority to specific compartments. These results validated most phylogenetic assignments, but also indicated that some sequence-conserved Rabs were co-opted for novel functions. Our survey uncovered a rare example of a nuclear Rab and substantiated the existence of a previously unrecognized core Rab clade in eukaryotes. Strikingly, several functionally conserved pathways or structures were found to be associated entirely with divergent Rabs. These pathways may have permitted rapid evolution of the associated Rabs or may have arisen independently in diverse lineages and then converged. Thus, characterizing entire gene families can provide insight into the evolutionary flexibility of fundamental cellular pathways.


Zdroje

1. DerbyMC

GleesonPA

2007 New insights into membrane trafficking and protein sorting. Int Rev Cytol 261 47 116

2. MartensS

McMahonHT

2008 Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9 543 556

3. DacksJB

FieldMC

2007 Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci 120 2977 2985

4. BonifacinoJS

GlickBS

2004 The mechanisms of vesicle budding and fusion. Cell 116 153 166

5. SegevN

2001 Ypt/rab gtpases: regulators of protein trafficking. Sci STKE 2001 RE11

6. SegevN

2001 Ypt and Rab GTPases: insight into functions through novel interactions. Curr Opin Cell Biol 13 500 511

7. MarkgrafDF

PeplowskaK

UngermannC

2007 Rab cascades and tethering factors in the endomembrane system. FEBS Lett 581 2125 2130

8. DacksJB

PedenAA

FieldMC

2009 Evolution of specificity in the eukaryotic endomembrane system. Int J Biochem Cell Biol 41 330 340

9. Pereira-LealJB

TeichmannSA

2005 Novel specificities emerge by stepwise duplication of functional modules. Genome Res 15 552 559

10. DhirV

GouldingD

FieldMC

2004 TbRAB1 and TbRAB2 mediate trafficking through the early secretory pathway of Trypanosoma brucei. Mol Biochem Parasitol 137 253 265

11. Pereira-LealJB

SeabraMC

2001 Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313 889 901

12. BockJB

MaternHT

PedenAA

SchellerRH

2001 A genomic perspective on membrane compartment organization. Nature 409 839 841

13. ZhangJ

SchulzeKL

HiesingerPR

SuyamaK

WangS

2007 Thirty-one flavors of Drosophila rab proteins. Genetics 176 1307 1322

14. LalK

FieldMC

CarltonJM

WarwickerJ

HirtRP

2005 Identification of a very large Rab GTPase family in the parasitic protozoan Trichomonas vaginalis. Mol Biochem Parasitol 143 226 235

15. Saito-NakanoY

LoftusBJ

HallN

NozakiT

2005 The diversity of Rab GTPases in Entamoeba histolytica. Exp Parasitol 110 244 252

16. AllenRD

FokAK

2000 Membrane trafficking and processing in Paramecium. Int Rev Cytol 198 277 318

17. AllenRD

SchroederCC

FokAK

1992 Endosomal system of Paramecium: coated pits to early endosomes. J Cell Sci 101 Pt 2 449 461

18. AllenRD

StaehelinLA

1981 Digestive system membranes: freeze-fracture evidence for differentiation and flow in Paramecium. J Cell Biol 89 9 20

19. SedarAW

PorterKR

1955 The fine structure of cortical components of Paramecium multimicronucleatum. J Biophys Biochem Cytol 1 583 604

20. ThompsonGAJr

NozawaY

1977 Tetrahymena: a system for studying dynamic membrane alterations within the eukaryotic cell. Biochim Biophys Acta 472 55 92

21. AllenRD

1978 Membranes of ciliates: ultrastructure, biochemistry and fusion. Membrane Fusion Amsterdam Elsevier/North-Holland Biomed. Press 657 763

22. FrankelJ

2000 Cell biology of Tetrahymena thermophila. Methods Cell Biol 6299432807 27 125

23. EisenJA

CoyneRS

WuM

WuD

ThiagarajanM

2006 Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4 e286 doi:10.1371/journal.pbio.0040286

24. AuryJM

JaillonO

DuretL

NoelB

JubinC

2006 Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444 171 178

25. AdhiamboC

BlisnickT

ToutiraisG

DelannoyE

BastinP

2009 A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum. J Cell Sci 122 834 841

26. Pereira-LealJB

SeabraMC

2000 The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 301 1077 1087

27. MiaoW

XiongJ

BowenJ

WangW

LiuY

2009 Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS ONE 4 e4429 doi:10.1371/journal.pone.0004429

28. StargellLA

KarrerKM

GorovskyMA

1990 Transcriptional regulation of gene expression in Tetrahymena thermophila. Nucl Acids Res 18 6637 6639

29. NelsenEM

DebaultLE

1978 Transformation in Tetrahymena pyriformis: description of an inducible phenotype. J Protozool 25 113 119

30. BannoY

SasakiN

NozawaY

1987 Secretion heterogeneity of lysosomal enzymes in Tetrahymena pyriformis. Exp Cell Res 170 259 268

31. MadingerCL

CollinsK

FieldsLG

TaronCH

BennerJS

2010 Constitutive secretion in Tetrahymena thermophila. Eukaryot Cell 9 674 681

32. RahamanA

EldeNC

TurkewitzAP

2008 A dynamin-related protein required for nuclear remodeling in Tetrahymena. Curr Biol 18 1227 1233

33. MartindaleDW

AllisCD

BrunsPJ

1982 Conjugation in Tetrahymena thermophila. A temporal analysis of cytological stages. Exp Cell Res 140 227 236

34. OriasJD

HamiltonEP

OriasE

1983 A microtubule meshwork associated with gametic pronucleus transfer across a cell-cell junction. Science 222 181 184

35. NelsenEM

WilliamsNE

YiH

KnaakJ

FrankelJ

1994 “Fenestrin” and conjugation in Tetrahymena thermophila. J Eukaryot Microbiol 41 483 495

36. CalzoneFJ

AngererRC

GorovskyMA

1983 Regulation of protein synthesis in Tetrahymena. Quantitative estimates of the parameters determining the rates of protein synthesis in growing, starved and starved-deciliated cells. J Biol Chem 258 6887 6898

37. JacobsME

DeSouzaLV

SamaranayakeH

PearlmanRE

SiuKW

2006 The Tetrahymena thermophila phagosome proteome. Eukaryot Cell 5 1990 2000

38. NilssonJR

1979 Phagotrophy in Tetrahymena.

LevandowskyM

HutnerSH

Biochemistry and Physiology of Protozoa New York Academic Press 339 379

39. AllenRD

FokAK

1980 Membrane recycling and endocytosis in Paramecium confirmed by horseradish peroxidase pulse-chase studies. J Cell Sci 45 131 145

40. NilssonJR

Van DeursB

1983 Coated pits and pinocytosis in Tetrahymena. J Cell Sci 63 209 222

41. AllenRD

1967 Fine structure, reconstruction and possible functions of components of the cortex of Tetrahymena pyriformis. J Protozool 14 553 565

42. EldeNC

MorganG

WineyM

SperlingL

TurkewitzAP

2005 Elucidation of Clathrin-Mediated Endocytosis in Tetrahymena Reveals an Evolutionarily Convergent Recruitment of Dynamin. PLoS Genet 1 e52 doi:10.1371/journal.pgen.0010052

43. KurzS

TiedtkeA

1993 The Golgi apparatus of Tetrahymena thermophila. J Eukaryot Microbiol 40 10 13

44. TurkewitzAP

2004 Out with a bang! Tetrahymena as a model system to study secretory granule biogenesis. Traffic 5 63 68

45. ZweifelE

SmithJ

RomeroD

GiddingsTHJr

WineyM

2009 Nested genes CDA12 and CDA13 encode proteins associated with membrane trafficking in the ciliate Tetrahymena thermophila. Eukaryot Cell 8 899 912

46. BowmanGR

EldeNC

MorganG

WineyM

TurkewitzAP

2005 Core Formation and the Acquisition of Fusion Competence are Linked During Secretory Granule Maturation in Tetrahymena. Traffic 6 303 323

47. CameronIL

BurtonAL

1969 On the cycle of the water expulsion vesicle in the ciliate Tetrahymena pyriformis. Trans Am Microsc Soc 88 386 393

48. DuF

EdwardsK

ShenZ

SunB

De LozanneA

2008 Regulation of contractile vacuole formation and activity in Dictyostelium. Embo J 27 2064 2076

49. TekleYI

GrantJR

KovnerAM

TownsendJP

KatzLA

2010 Identification of new molecular markers for assembling the eukaryotic tree of life. Mol Phylogenet Evol

50. NorianL

DragoiIA

O'HalloranT

1999 Molecular characterization of rabE, a developmentally regulated Dictyostelium homolog of mammalian rab GTPases. DNA Cell Biol 18 59 64

51. AllenRD

WolfRW

1979 Membrane recycling at the cytoproct of Tetrahymena. J Cell Sci 35 217 227

52. CetkovicH

MikocA

MullerWE

GamulinV

2007 Ras-like small GTPases form a large family of proteins in the marine sponge Suberites domuncula. J Mol Evol 64 332 341

53. CoyneRS

ThiagarajanM

JonesKM

WortmanJR

TallonLJ

2008 Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure. BMC Genomics 9 562

54. ZufallRA

McGrathCL

MuseSV

KatzLA

2006 Genome architecture drives protein evolution in ciliates. Mol Biol Evol 23 1681 1687

55. RutherfordS

MooreI

2002 The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol 5 518 528

56. KienleN

KloepperTH

FasshauerD

2009 Phylogeny of the SNARE vesicle fusion machinery yields insights into the conservation of the secretory pathway in fungi. BMC Evol Biol 9 19

57. KienleN

KloepperTH

FasshauerD

2009 Differences in the SNARE evolution of fungi and metazoa. Biochem Soc Trans 37 787 791

58. Pereira-LealJB

2008 The Ypt/Rab family and the evolution of trafficking in fungi. Traffic 9 27 38

59. EldeNC

LongM

TurkewitzAP

2007 A role for convergent evolution in the secretory life of cells. Trends Cell Biol 17 157 164

60. NachuryMV

LoktevAV

ZhangQ

WestlakeCJ

PeränenJ

2007 A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129 1201 1213

61. KissmehlR

SchildeC

WassmerT

DanzerC

NuehseK

2007 Molecular identification of 26 syntaxin genes and their assignment to the different trafficking pathways in Paramecium. Traffic 8 523 542

62. HorowitzS

GorovskyMA

1985 An unusual genetic code in nuclear genes of Tetrahymena. Proc Natl Acad Sci U S A 82 2452 2455

63. GuindonS

GascuelO

2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52 696 704

64. HuelsenbeckJP

RonquistF

2001 MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17 754 755

65. RonquistF

HuelsenbeckJP

2003 MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 1572 1574

66. FelsensteinJ

2006 Accuracy of coalescent likelihood estimates: do we need more sites, more sequences, or more loci? Mol Biol Evol 23 691 700

67. EdgarRC

2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797

68. GouyM

GuindonS

GascuelO

2010 SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27 221 224

69. FelsensteinJ

1989 PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5 164 166

70. MaloneCD

FalkowskaKA

LiAY

GalantiSE

KanuruRC

2008 Nucleus-specific importin alpha proteins and nucleoporins regulate protein import and nuclear division in the binucleate Tetrahymena thermophila. Eukaryot Cell 7 1487 1499

71. ZachariasDA

ViolinJD

NewtonAC

TsienRY

2002 Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296 913 916

72. ShangY

SongX

BowenJ

CorstanjeR

GaoY

2002 A robust inducible-repressible promoter greatly facilitates gene knockouts, conditional expression, and overexpression of homologous and heterologous genes in Tetrahymena thermophila. Proc Natl Acad Sci U S A 99 3734 3739

73. GaertigJ

GorovskyMA

1992 Efficient mass transformation of Tetrahymena thermophila by electroporation of conjugants. Proc Natl Acad Sci USA 89 9196 9200

74. ChoiYY

JooMK

SohnYS

JeongB

2008 Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers. Soft Matter 4 2383 2387

75. VidaTA

EmrSD

1995 A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128 779 792

76. StrackRL

StronginDE

BhattacharyyaD

TaoW

BermanA

2008 A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods 5 955 957

77. ZhaoX

ClaudeA

ChunJ

ShieldsDJ

PresleyJF

2006 GBF1, a cis-Golgi and VTCs-localized ARF-GEF, is implicated in ER-to-Golgi protein traffic. J Cell Sci 119 3743 3753

78. BowmanGR

TurkewitzAP

2001 Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila. Genetics 159 1605 1616

79. HarrisE

YoshidaK

CardelliJ

BushJ

2001 Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in dictyostelium. J Cell Sci 114 3035 3045

80. WasmeierC

RomaoM

PlowrightL

BennettDC

RaposoG

2006 Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J Cell Biol 175 271 281

81. AckersJP

DhirV

FieldMC

2005 A bioinformatic analysis of the RAB genes of Trypanosoma brucei. Mol Biochem Parasitol 141 89 97

82. QuevillonE

SpielmannT

BrahimiK

ChattopadhyayD

YeramianE

2003 The Plasmodium falciparum family of Rab GTPases. Gene 306 13 25

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#