A Novel Checkpoint and RPA Inhibitory Pathway Regulated by Rif1
Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA–damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular “band-aid” for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA–dependent DNA–damage responses in eukaryotic cells.
Vyšlo v časopise:
A Novel Checkpoint and RPA Inhibitory Pathway Regulated by Rif1. PLoS Genet 7(12): e32767. doi:10.1371/journal.pgen.1002417
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002417
Souhrn
Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA–damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular “band-aid” for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA–dependent DNA–damage responses in eukaryotic cells.
Zdroje
1. MichelsonRJRosensteinSWeinertT 2005 A telomeric repeat sequence adjacent to a DNA double-stranded break produces an anticheckpoint. Genes Dev 19 2546 59
2. SilvermanJTakaiHBuonomoSBEisenhaberFde LangeT 2004 Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev 18 2108 19
3. MurnaneJP 2010 Telomere loss as a mechanism for chromosome instability in human cancer. Cancer Res 70 4255 9
4. ReddelRR 2010 Senescence: an antiviral defense that is tumor suppressive? Carcinogenesis 31 19 26
5. ArtandiSEDePinhoRA 2010 Telomeres and telomerase in cancer. Carcinogenesis 31 9 18
6. ClemensonCMarsolier-KergoatMC 2009 DNA damage checkpoint inactivation: adaptation and recovery. DNA Repair (Amst) 8 1101 9
7. LeeSEMooreJKHolmesAUmezuKKolodnerRD 1998 Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94 399 409
8. PellicioliALeeSELuccaCFoianiMHaberJE 2001 Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 7 293 300
9. LeeSEPellicioliAMalkovaAFoianiMHaberJE 2001 The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break. Curr Biol 11 1053 7
10. VazeMBPellicioliALeeSEIraGLiberiG 2002 Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10 373 85
11. ClericiMMantieroDLucchiniGLongheseMP 2006 The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep 7 212 8
12. DonnianniRAFerrariMLazzaroFClericiMTamilselvan NachimuthuB PLoS Genet 6 e1000763 doi:10.1371/journal.pgen.1000763
13. CarneiroTKhairLReisCCBorgesVMoserBA 2010 Telomeres avoid end detection by severing the checkpoint signal transduction pathway. Nature 467 228 32
14. JainDHebdenAKNakamuraTMMillerKMCooperJP HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature 467 223 7
15. MaringeleLLydallD 2004 Telomerase- and recombination-independent immortalization of budding yeast. Genes Dev 18 2663 75
16. ShoreD 1994 RAP1: a protean regulator in yeast. Trends Genet 10 408 12
17. HardyCFSusselLShoreD 1992 A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6 801 14
18. NgoHPLydallD 2010 Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9. PLoS Genet 6 e1001072 doi:10.1371/journal.pgen.1001072
19. BournsBDAlexanderMKSmithAMZakianVA 1998 Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo, Mol Cell Biol 18 5600 8
20. SmithCDSmithDLDeRisiJLBlackburnEH 2003 Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol Biol Cell 14 556 70
21. XuLBlackburnEH 2004 Human Rif1 protein binds aberrant telomeres and aligns along anaphase midzone microtubules. J Cell Biol 167 819 30
22. MajkaJBurgersPM 2003 Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proc Natl Acad Sci U S A 100 2249 54
23. ZouLElledgeSJ 2003 Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300 1542 8
24. MajkaJNiedziela-MajkaABurgersPM 2006 The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol Cell 24 891 901
25. LydallD 2009 Taming the tiger by the tail: modulation of DNA damage responses by telomeres. Embo J 28 2174 2187
26. AnbalaganSBonettiDLucchiniGLongheseMP 2011 Rif1 supports the function of the CST complex in yeast telomere capping. PLoS Genet 7 e1002024 doi:10.1371/journal.pgen.1002024
27. MaringeleLLydallD 2002 EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev 16 1919 33
28. ZubkoMKLydallD 2006 Linear chromosome maintenance in the absence of essential telomere-capping proteins. Nat Cell Biol 8 734 40
29. ZubkoMKMaringeleLFosterSSLydallD 2006 Detecting repair intermediates in vivo: effects of DNA damage response genes on single-stranded DNA accumulation at uncapped telomeres in budding yeast. Methods Enzymol 409 285 300
30. AddinallSGHolsteinEMLawlessCYuMChapmanK 2011 Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS Genet 7 e1001362 doi:10.1371/journal.pgen.1001362
31. WottonDShoreD 1997 A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11 748 60
32. DewarJMLydallD Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. Embo J 29 4020 34
33. VodenicharovMDWellingerRJ 2006 DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol Cell 24 127 37
34. ZubkoMKGuillardSLydallD 2004 Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 168 103 15
35. BreitkreutzAChoiHSharomJRBoucherLNeduvaV A global protein kinase and phosphatase interaction network in yeast. Science 328 1043 6
36. HarrisonJCHaberJE 2006 Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40 209 35
37. JacksonSPBartekJ 2009 The DNA-damage response in human biology and disease. Nature 461 1071 8
38. Park S, Patterson EE, Cobb J, Audhya A, Gartenberg MR, et al. Palmitoylation controls the dynamics of budding-yeast heterochromatin via the telomere-binding protein Rif1. Proc Natl Acad Sci U S A 108 14572 7
39. LevyDLBlackburnEH 2004 Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol Cell Biol 24 10857 67
40. MillerKMFerreiraMGCooperJP 2005 Taz1, Rap1 and Rif1 act both interdependently and independently to maintain telomeres. Embo J 24 3128 35
41. GoudsouzianLKTuzonCTZakianVA 2006 S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association. Mol Cell 24 603 10
42. SabourinMTuzonCTZakianVA 2007 Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol Cell 27 550 61
43. BonettiDClericiMAnbalaganSMartinaMLucchini 2010 Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genet 6 e1000966 doi:10.1371/journal.pgen.1000966
44. HiranoYFukunagaKSugimotoK 2009 Rif1 and rif2 inhibit localization of tel1 to DNA ends. Mol Cell 33 312 22
45. WangHZhaoAChenLZhongXLiaoJ 2009 Human RIF1 encodes an anti-apoptotic factor required for DNA repair. Carcinogenesis 30 1314 9
46. BuonomoSBWuYFergusonDde LangeT 2009 Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J Cell Biol 187 385 98
47. XuDMuniandyPLeoEYinJThangavelS 2010 Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. Embo J 29 3140 55
48. LongtineMSMcKenzie A3rdDemariniDJShahNGWachA 1998 Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14 953 61
49. LongheseMPPaciottiVFraschiniRZaccariniRPlevaniP 1997 The novel DNA damage checkpoint protein ddc1p is phosphorylated periodically during the cell cycle and in response to DNA damage in budding yeast. Embo J 16 5216 26
50. LisbyMBarlowJHBurgessRCRothsteinR 2004 Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118 699 713
51. BoothCGriffithEBradyGLydallD 2001 Quantitative amplification of single-stranded DNA (QAOS) demonstrates that cdc13-1 mutants generate ssDNA in a telomere to centromere direction. Nucleic Acids Res 29 4414 22
52. FoianiMMariniFGambaDLucchiniGPlevaniP 1994 The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication. Mol Cell Biol 14 923 33
53. BraunsteinMRoseABHolmesSGAllisCDBroachRJ 1993 Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7 592 604
54. DedonPCSoultsJAAllisCDGorovskyMA 1991 A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions. Anal Biochem 197 83 90
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Targeted Proteolysis of Plectin Isoform 1a Accounts for Hemidesmosome Dysfunction in Mice Mimicking the Dominant Skin Blistering Disease EBS-Ogna
- The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity
- The FGFR4-G388R Polymorphism Promotes Mitochondrial STAT3 Serine Phosphorylation to Facilitate Pituitary Growth Hormone Cell Tumorigenesis
- Hierarchical Generalized Linear Models for Multiple Groups of Rare and Common Variants: Jointly Estimating Group and Individual-Variant Effects