Candidate Gene Screen in the Red Flour Beetle Reveals as Ancient Regulator of Anterior Median Head and Central Complex Development
Several highly conserved genes play a role in anterior neural plate patterning of vertebrates and in head and brain patterning of insects. However, head involution in Drosophila has impeded a systematic identification of genes required for insect head formation. Therefore, we use the red flour beetle Tribolium castaneum in order to comprehensively test the function of orthologs of vertebrate neural plate patterning genes for a function in insect head development. RNAi analysis reveals that most of these genes are indeed required for insect head capsule patterning, and we also identified several genes that had not been implicated in this process before. Furthermore, we show that Tc-six3/optix acts upstream of Tc-wingless, Tc-orthodenticle1, and Tc-eyeless to control anterior median development. Finally, we demonstrate that Tc-six3/optix is the first gene known to be required for the embryonic formation of the central complex, a midline-spanning brain part connected to the neuroendocrine pars intercerebralis. These functions are very likely conserved among bilaterians since vertebrate six3 is required for neuroendocrine and median brain development with certain mutations leading to holoprosencephaly.
Vyšlo v časopise:
Candidate Gene Screen in the Red Flour Beetle Reveals as Ancient Regulator of Anterior Median Head and Central Complex Development. PLoS Genet 7(12): e32767. doi:10.1371/journal.pgen.1002416
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002416
Souhrn
Several highly conserved genes play a role in anterior neural plate patterning of vertebrates and in head and brain patterning of insects. However, head involution in Drosophila has impeded a systematic identification of genes required for insect head formation. Therefore, we use the red flour beetle Tribolium castaneum in order to comprehensively test the function of orthologs of vertebrate neural plate patterning genes for a function in insect head development. RNAi analysis reveals that most of these genes are indeed required for insect head capsule patterning, and we also identified several genes that had not been implicated in this process before. Furthermore, we show that Tc-six3/optix acts upstream of Tc-wingless, Tc-orthodenticle1, and Tc-eyeless to control anterior median development. Finally, we demonstrate that Tc-six3/optix is the first gene known to be required for the embryonic formation of the central complex, a midline-spanning brain part connected to the neuroendocrine pars intercerebralis. These functions are very likely conserved among bilaterians since vertebrate six3 is required for neuroendocrine and median brain development with certain mutations leading to holoprosencephaly.
Zdroje
1. Schmidt-OttUGonzalez-GaitanMJackleHTechnauGM 1994 Number, identity, and sequence of the Drosophila head segments as revealed by neural elements and their deletion patterns in mutants. Proc Natl Acad Sci U S A 91 8363 8367
2. Schmidt-OttUTechnauGM 1992 Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development 116 111 125
3. PosnienNBashasabFBucherG 2009 The insect upper lip (labrum) is a nonsegmental appendage-like structure. Evol Dev 11 479 487
4. PosnienNSchinkoJBKittelmannSBucherG 2010 Genetics, development and composition of the insect head - A beetle's view. Arthropod Struct Dev E pub ahead of print
5. ScholtzGEdgecombeGD 2006 The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216 395 415
6. RogersBTKaufmanTC 1997 Structure of the insect head in ontogeny and phylogeny: a view from Drosophila. Int Rev Cytol 174 1 84
7. CohenSMJurgensG 1990 Mediation of Drosophila head development by gap-like segmentation genes. Nature 346 482 485
8. GrossniklausUPearsonRKGehringWJ 1992 The Drosophila sloppy paired locus encodes two proteins involved in segmentation that show homology to mammalian transcription factors. Genes Dev 6 1030 1051
9. CrozatierMValleDDuboisLIbnsoudaSVincentA 1996 Collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain. Curr Biol 6 707 718
10. SchockFReischlJWimmerETaubertHPurnellBA 2000 Phenotypic suppression of empty spiracles is prevented by buttonhead. Nature 405 351 354
11. WimmerEACohenSMJackleHDesplanC 1997 buttonhead does not contribute to a combinatorial code proposed for Drosophila head development. Development 124 1509 1517
12. NtiniEWimmerEA 2011 Unique establishment of procephalic head segments is supported by the identification of cis-regulatory elements driving segment-specific segment polarity gene expression in Drosophila. Dev Genes Evol 221 1 16
13. Gallitano-MendelAFinkelsteinR 1997 Novel segment polarity gene interactions during embryonic head development in Drosophila. Dev Biol 192 599 613
14. SnodgrassRE 1935 Principles of Insect Morphology New York McGRaw Hill
15. Campos-OrtegaJAHartensteinV 1985 The Embryonic Development of Drosophila melanogaster New York Springer-Verlag
16. TurnerFRMahowaldAP 1979 Scanning electron microscopy of Drosophila melanogaster embryogenesis. III. Formation of the head and caudal segments. Dev Biol 68 96 109
17. SnodgrassRE 1953 The metamorphosis of a fly's head. Smithsonian Miscellaneous Collections 122 1 25
18. SnodgrassRE 1954 Insect Metamorphosis. Washington
19. StauberMJackleHSchmidt-OttU 1999 The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc Natl Acad Sci U S A 96 3786 3789
20. SchoppmeierMSchröderR 2005 Maternal torso signaling controls body axis elongation in a short germ insect. Curr Biol 15 2131 2136
21. van der ZeeMStockhammerOvon LevetzowCNunes da FonsecaRRothS 2006 Sog/Chordin is required for ventral-to-dorsal Dpp/BMP transport and head formation in a short germ insect. Proc Natl Acad Sci U S A 103 16307 16312
22. CohenSJurgensG 1991 Drosophila headlines. Trends Genet 7 267 272
23. GrossniklausUCadiganKMGehringWJ 1994 Three maternal coordinate systems cooperate in the patterning of the Drosophila head. Development 120 3155 3171
24. StreckerTRKongsuwanKLengyelJAMerriamJR 1986 The zygotic mutant tailless affects the anterior and posterior ectodermal regions of the Drosophila embryo. Dev Biol 113 64 76
25. MohlerJ 1995 Spatial regulation of segment polarity gene expression in the anterior terminal region of the Drosophila blastoderm embryo. Mech Dev 50 151 161
26. Younossi-HartensteinAGreenPLiawGJRudolphKLengyelJ 1997 Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. Dev Biol 182 270 283
27. SimeoneAAcamporaDGulisanoMStornaiuoloABoncinelliE 1992 Nested expression domains of four homeobox genes in developing rostral brain. Nature 358 687 690
28. SimeoneAGulisanoMAcamporaDStornaiuoloARambaldiM 1992 Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. Embo J 11 2541 2550
29. LeuzingerSHirthFGerlichDAcamporaDSimeoneA 1998 Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. Development 125 1703 1710
30. HirthFReichertH 1999 Conserved genetic programs in insect and mammalian brain development. Bioessays 21 677 684
31. HollandPInghamPKraussS 1992 Development and evolution. Mice and flies head to head. Nature 358 627 628
32. YuRTMcKeownMEvansRMUmesonoK 1994 Relationship between Drosophila gap gene tailless and a vertebrate nuclear receptor Tlx. Nature 370 375 379
33. MonaghanAPGrauEBockDSchutzG 1995 The mouse homolog of the orphan nuclear receptor tailless is expressed in the developing forebrain. Development 121 839 853
34. AcamporaDAvantaggiatoVTuortoFBaronePReichertH 1998 Murine Otx1 and Drosophila otd genes share conserved genetic functions required in invertebrate and vertebrate brain development. Development 125 1691 1702
35. HirthFKammermeierLFreiEWalldorfUNollM 2003 An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 130 2365 2373
36. ReichertH 2005 A tripartite organization of the urbilaterian brain: developmental genetic evidence from Drosophila. Brain Res Bull 66 491 494
37. De VelascoBShenJGoSHartensteinV 2004 Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Dev Biol 274 280 294
38. ErclikTHartensteinVLipshitzHDMcInnesRR 2008 Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems. Curr Biol 18 1278 1287
39. EggertTHauckBHildebrandtNGehringWJWalldorfU 1998 Isolation of a Drosophila homolog of the vertebrate homeobox gene Rx and its possible role in brain and eye development. Proc Natl Acad Sci U S A 95 2343 2348
40. DavisRJShenWHeanueTAMardonG 1999 Mouse Dach, a homologue of Drosophila dachshund, is expressed in the developing retina, brain and limbs. Dev Genes Evol 209 526 536
41. Gomez-SkarmetaJLGlavicAde la Calle-MustienesEModolellJMayorR 1998 Xiro, a Xenopus homolog of the Drosophila Iroquois complex genes, controls development at the neural plate. Embo J 17 181 190
42. GorielyAStellaMCoffinierCKesslerDMailhosC 1996 A functional homologue of goosecoid in Drosophila. Development 122 1641 1650
43. UrbachR 2007 A procephalic territory in Drosophila exhibiting similarities and dissimilarities compared to the vertebrate midbrain/hindbrain boundary region. Neural Develop 2 23
44. PosnienNKoniszewskiNBucherG 2011 Insect Tc-six4 marks a unit with similarity to vertebrate placodes. Dev Biol
45. CavodeassiFModolellJGomez-SkarmetaJL 2001 The Iroquois family of genes: from body building to neural patterning. Development 128 2847 2855
46. HartensteinVRehTA 2002 Homologies between vertebrate and invertebrate eyes. MosesK Drosophila eye development Berlin Heidelberg Springer-Verlag
47. HartensteinV 2006 The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190 555 570
48. TomerRDenesASTessmar-RaibleKArendtD 2010 Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142 800 809
49. DenesASJekelyGSteinmetzPRRaibleFSnymanH 2007 Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129 277 288
50. ArendtD 2005 Genes and homology in nervous system evolution: comparing gene functions, expression patterns, and cell type molecular fingerprints. Theory Biosci 124 185 197
51. Tessmar-RaibleKRaibleFChristodoulouFGuyKRemboldM 2007 Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129 1389 1400
52. ArendtDDenesASJekelyGTessmar-RaibleK 2008 The evolution of nervous system centralization. Philos Trans R Soc Lond B Biol Sci 363 1523 1528
53. BucherGWimmerEA 2005 Beetle a-head. BIF Futura 20 164 169
54. SchinkoJBKreuzerNOffenNPosnienNWimmerEA 2008 Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Dev Biol 317 600 613
55. CernyACGrossmannDBucherGKlinglerM 2008 The Tribolium ortholog of knirps and knirps-related is crucial for head segmentation but plays a minor role during abdominal patterning. Dev Biol 321 284 294
56. SchaeperNDPechmannMDamenWGPrpicNMWimmerEA 2010 Evolutionary plasticity of collier function in head development of diverse arthropods. Dev Biol 344 363 376
57. EconomouADTelfordMJ 2009 Comparative gene expression in the heads of Drosophila melanogaster and Tribolium castaneum and the segmental affinity of the Drosophila hypopharyngeal lobes. Evol Dev 11 88 96
58. SeoHCCurtissJMlodzikMFjoseA 1999 Six class homeobox genes in drosophila belong to three distinct families and are involved in head development. Mech Dev 83 127 139
59. CheyetteBNGreenPJMartinKGarrenHHartensteinV 1994 The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12 977 996
60. SerikakuMAO'TousaJE 1994 sine oculis is a homeobox gene required for Drosophila visual system development. Genetics 138 1137 1150
61. PignoniFHuBZavitzKHXiaoJGarrityPA 1997 The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91 881 891
62. CoiffierDCharrouxBKerridgeS 2008 Common functions of central and posterior Hox genes for the repression of head in the trunk of Drosophila. Development 135 291 300
63. LiuWLagutinOSwindellEJamrichMOliverG 2010 Neuroretina specification in mouse embryos requires Six3-mediated suppression of Wnt8b in the anterior neural plate. J Clin Invest 120 3568 3577
64. Del BeneFTessmar-RaibleKWittbrodtJ 2004 Direct interaction of geminin and Six3 in eye development. Nature 427 745 749
65. CarlMLoosliFWittbrodtJ 2002 Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development 129 4057 4063
66. GoudreauGPetrouPRenekerLWGrawJLosterJ 2002 Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype. Proc Natl Acad Sci U S A 99 8719 8724
67. LagutinOZhuCCFurutaYRowitchDHMcMahonAP 2001 Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Dev Dyn 221 342 349
68. LoosliFWinklerSWittbrodtJ 1999 Six3 overexpression initiates the formation of ectopic retina. Genes Dev 13 649 654
69. ToyJYangJMLeppertGSSundinOH 1998 The optx2 homeobox gene is expressed in early precursors of the eye and activates retina-specific genes. Proc Natl Acad Sci U S A 95 10643 10648
70. SeimiyaMGehringWJ 2000 The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development 127 1879 1886
71. GestriGCarlMAppolloniIWilsonSWBarsacchiG 2005 Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression. Development 132 2401 2413
72. LagutinOVZhuCCKobayashiDTopczewskiJShimamuraK 2003 Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17 368 379
73. LavadoALagutinOVOliverG 2008 Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon. Development 135 441 450
74. LoosliFKosterRWCarlMKroneAWittbrodtJ 1998 Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech Dev 74 159 164
75. KobayashiMToyamaRTakedaHDawidIBKawakamiK 1998 Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125 2973 2982
76. Gaston-MassuetCAndoniadouCLSignoreMSajediEBirdS 2008 Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development. Dev Biol 324 322 333
77. JeanDBernierGGrussP 1999 Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mech Dev 84 31 40
78. GhanbariHSeoHCFjoseABrandliAW 2001 Molecular cloning and embryonic expression of Xenopus Six homeobox genes. Mech Dev 101 271 277
79. GallardoMELopez-RiosJFernaud-EspinosaIGranadinoBSanzR 1999 Genomic cloning and characterization of the human homeobox gene SIX6 reveals a cluster of SIX genes in chromosome 14 and associates SIX6 hemizygosity with bilateral anophthalmia and pituitary anomalies. Genomics 61 82 91
80. OliverGMailhosAWehrRCopelandNGJenkinsNA 1995 Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121 4045 4055
81. SteinmetzPRUrbachRPosnienNErikssonJKostyuchenkoRP 2010 Six3 demarcates the anterior-most developing brain region in bilaterian animals. Evodevo 1 14
82. BoncinelliEGulisanoMBroccoliV 1993 Emx and Otx homeobox genes in the developing mouse brain. J Neurobiol 24 1356 1366
83. RubensteinJLShimamuraKMartinezSPuellesL 1998 Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21 445 477
84. RubensteinJLRShimamuraK 1997 Regulation of patterning and differentiation in the embryonic vertebrate forebrain. CowanWMJessellTMZipurskySL Molecular and Cellular Approaches to Neural Development New York Oxford Oxford University Press 356 390
85. TakahashiMOsumiN 2008 Expression study of cadherin7 and cadherin20 in the embryonic and adult rat central nervous system. BMC Dev Biol 8 87
86. HollemannTBellefroidEPielerT 1998 The Xenopus homologue of the Drosophila gene tailless has a function in early eye development. Development 125 2425 2432
87. KitambiSSHauptmannG 2007 The zebrafish orphan nuclear receptor genes nr2e1 and nr2e3 are expressed in developing eye and forebrain. Gene Expr Patterns 7 521 528
88. ShengHZBertuzziSChiangCShawlotWTairaM 1997 Expression of murine Lhx5 suggests a role in specifying the forebrain. Dev Dyn 208 266 277
89. CamusADavidsonBPBilliardsSKhooPRivera-PerezJA 2000 The morphogenetic role of midline mesendoderm and ectoderm in the development of the forebrain and the midbrain of the mouse embryo. Development 127 1799 1813
90. LemaireLRoeserTIzpisua-BelmonteJCKesselM 1997 Segregating expression domains of two goosecoid genes during the transition from gastrulation to neurulation in chick embryos. Development 124 1443 1452
91. ChuangJCMathersPHRaymondPA 1999 Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech Dev 84 195 198
92. DeschetKBourratFRistoratoreFChourroutDJolyJS 1999 Expression of the medaka (Oryzias latipes) Ol-Rx3 paired-like gene in two diencephalic derivatives, the eye and the hypothalamus. Mech Dev 83 179 182
93. MathersPHGrinbergAMahonKAJamrichM 1997 The Rx homeobox gene is essential for vertebrate eye development. Nature 387 603 607
94. MeijlinkFBeverdamABrouwerAOosterveenTCBergeDT 1999 Vertebrate aristaless-related genes. Int J Dev Biol 43 651 663
95. HashimotoHYabeTHirataTShimizuTBaeY 2000 Expression of the zinc finger gene fez-like in zebrafish forebrain. Mech Dev 97 191 195
96. HirataTNakazawaMMuraokaONakayamaRSudaY 2006 Zinc-finger genes Fez and Fez-like function in the establishment of diencephalon subdivisions. Development 133 3993 4004
97. HirataTSudaYNakaoKNarimatsuMHiranoT 2004 Zinc finger gene fez-like functions in the formation of subplate neurons and thalamocortical axons. Dev Dyn 230 546 556
98. JeongJYEinhornZMathurPChenLLeeS 2007 Patterning the zebrafish diencephalon by the conserved zinc-finger protein Fezl. Development 134 127 136
99. MatsuoISudaYYoshidaMUekiTKimuraC 1997 Otx and Emx functions in patterning of the vertebrate rostral head. Cold Spring Harb Symp Quant Biol 62 545 553
100. McMahonAPJoynerALBradleyAMcMahonJA 1992 The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69 581 595
101. AotoKNishimuraTEtoKMotoyamaJ 2002 Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face, and limb bud. Dev Biol 251 320 332
102. HebertJMFishellG 2008 The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci
103. GlavicAGomez-SkarmetaJLMayorR 2002 The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation. Development 129 1609 1621
104. ScholppSLohsCBrandM 2003 Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development 130 4881 4893
105. ShimamuraKRubensteinJL 1997 Inductive interactions direct early regionalization of the mouse forebrain. Development 124 2709 2718
106. FjoseAIzpisua-BelmonteJCFromental-RamainCDubouleD 1994 Expression of the zebrafish gene hlx-1 in the prechordal plate and during CNS development. Development 120 71 81
107. LuSBogaradLDMurthaMTRuddleFH 1992 Expression pattern of a murine homeobox gene, Dbx, displays extreme spatial restriction in embryonic forebrain and spinal cord. Proc Natl Acad Sci U S A 89 8053 8057
108. GershonAARudnickJKalamLZimmermanK 2000 The homeodomain-containing gene Xdbx inhibits neuronal differentiation in the developing embryo. Development 127 2945 2954
109. LuSWiseTLRuddleFH 1994 Mouse homeobox gene Dbx: sequence, gene structure and expression pattern during mid-gestation. Mech Dev 47 187 195
110. ShojiHItoTWakamatsuYHayasakaNOhsakiK 1996 Regionalized expression of the Dbx family homeobox genes in the embryonic CNS of the mouse. Mech Dev 56 25 39
111. DickinsonASiveH 2007 Positioning the extreme anterior in Xenopus: cement gland, primary mouth and anterior pituitary. Semin Cell Dev Biol 18 525 533
112. DuttaSDietrichJEAspockGBurdineRDSchierA 2005 pitx3 defines an equivalence domain for lens and anterior pituitary placode. Development 132 1579 1590
113. SchweickertASteinbeisserHBlumM 2001 Differential gene expression of Xenopus Pitx1, Pitx2b and Pitx2c during cement gland, stomodeum and pituitary development. Mech Dev 107 191 194
114. ZilinskiCAShahRLaneMEJamrichM 2005 Modulation of zebrafish pitx3 expression in the primordia of the pituitary, lens, olfactory epithelium and cranial ganglia by hedgehog and nodal signaling. Genesis 41 33 40
115. CrossleyPHMartinGR 1995 The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121 439 451
116. ColomboEGalliRCossuGGeczJBroccoliV 2004 Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons. Dev Dyn 231 631 639
117. El-HodiriHMQiXLSeufertDW 2003 The Xenopus arx gene is expressed in the developing rostral forebrain. Dev Genes Evol 212 608 612
118. FriocourtGPoirierKRakicSParnavelasJGChellyJ 2006 The role of ARX in cortical development. Eur J Neurosci 23 869 876
119. SeufertDWPrescottNLEl-HodiriHM 2005 Xenopus aristaless-related homeobox (xARX) gene product functions as both a transcriptional activator and repressor in forebrain development. Dev Dyn 232 313 324
120. CavodeassiFCarreira-BarbosaFYoungRMConchaMLAllendeML 2005 Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron 47 43 56
121. BroccoliVColomboECossuG 2002 Dmbx1 is a paired-box containing gene specifically expressed in the caudal most brain structures. Mech Dev 114 219 223
122. GogoiRNSchubertFRMartinez-BarberaJPAcamporaDSimeoneA 2002 The paired-type homeobox gene Dmbx1 marks the midbrain and pretectum. Mech Dev 114 213 217
123. HallonetMHollemannTWehrRJenkinsNACopelandNG 1998 Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. Development 125 2599 2610
124. JonesFSKioussiCCopertinoDWKallunkiPHolstBD 1997 Barx2, a new homeobox gene of the Bar class, is expressed in neural and craniofacial structures during development. Proc Natl Acad Sci U S A 94 2632 2637
125. KawaharaAChienCBDawidIB 2002 The homeobox gene mbx is involved in eye and tectum development. Dev Biol 248 107 117
126. MartynovaNEroshkinFErmakovaGBayramovAGrayJ 2004 Patterning the forebrain: FoxA4a/Pintallavis and Xvent2 determine the posterior limit of Xanf1 expression in the neural plate. Development 131 2329 2338
127. ThomasPBeddingtonR 1996 Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6 1487 1496
128. BeermannASchroderR 2008 Sites of Fgf signalling and perception during embryogenesis of the beetle Tribolium castaneum. Dev Genes Evol 218 153 167
129. StathopoulosATamBRonshaugenMFraschMLevineM 2004 pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes Dev 18 687 699
130. LiYBrownSJHausdorfBTautzDDenellRE 1996 Two orthodenticle-related genes in the short germ beetle Tribolium castaneum. Dev Genes Evol 206 35 45
131. SchröderREckertCWolffCTautzD 2000 Conserved and divergent aspects of terminal patterning in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A 97 6591 6596
132. FarzanaLBrownSJ 2008 Hedgehog signaling pathway function conserved in Tribolium segmentation. Dev Genes Evol 218 181 192
133. LiuZYangXDongYFriedrichM 2006 Tracking down the “head blob”: comparative analysis of wingless expression in the developing insect procephalon reveals progressive reduction of embryonic visual system patterning in higher insects. Arthropod Struct Dev 35 341 356
134. NagyLMCarrollS 1994 Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367 460 463
135. ChoeCPBrownSJ 2007 Evolutionary flexibility of pair-rule patterning revealed by functional analysis of secondary pair-rule genes, paired and sloppy-paired in the short-germ insect, Tribolium castaneum. Dev Biol 302 281 294
136. YangXWeberMZarinkamarNPosnienNFriedrichF 2009 Probing the Drosophila retinal determination gene network in Tribolium (II): The Pax6 genes eyeless and twin of eyeless. Dev Biol
137. PosnienNBucherG 2010 Formation of the insect head involves lateral contribution of the intercalary segment, which depends on Tc-labial function. Dev Biol 338 107 116
138. BolognesiRFarzanaLFischerTDBrownSJ 2008 Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum. Curr Biol 18 1624 1629
139. NoveenADanielAHartensteinV 2000 Early development of the Drosophila mushroom body: the roles of eyeless and dachshund. Development 127 3475 3488
140. KurusuMNagaoTWalldorfUFlisterSGehringWJ 2000 Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and Dachshund genes. Proc Natl Acad Sci U S A 97 2140 2144
141. de VelascoBErclikTShyDSclafaniJLipshitzH 2007 Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the Drosophila brain. Dev Biol 302 309 323
142. TechnauGMBergerCUrbachR 2006 Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila. Dev Dyn 235 861 869
143. SkeathJBThorS 2003 Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 13 8 15
144. AminALiYFinkelsteinR 1999 Hedgehog activates the EGF receptor pathway during Drosophila head development. Development 126 2623 2630
145. DavisRJTavsanliBCDittrichCWalldorfUMardonG 2003 Drosophila retinal homeobox (drx) is not required for establishment of the visual system, but is required for brain and clypeus development. Dev Biol 259 272 287
146. RoignantJYLegentKJanodyFTreismanJE 2010 The transcriptional co-factor Chip acts with LIM-homeodomain proteins to set the boundary of the eye field in Drosophila. Development 137 273 281
147. CavodeassiFModolellJCampuzanoS 2000 The Iroquois homeobox genes function as dorsal selectors in the Drosophila head. Development 127 1921 1929
148. WilliamsJLBoyanGS 2008 Building the central complex of the grasshopper Schistocerca gregaria: axons pioneering the w, x, y, z tracts project onto the primary commissural fascicle of the brain. Arthropod Struct Dev 37 129 140
149. EvansCJOlsonJMNgoKTKimELeeNE 2009 G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 6 603 605
150. RennSCArmstrongJDYangMWangZAnX 1999 Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol 41 189 207
151. PereanuWYounossi-HartensteinALovickJSpindlerSHartensteinV 2011 Lineage-based analysis of the development of the central complex of the Drosophila brain. J Comp Neurol 519 661 689
152. YoungJMArmstrongJD Building the central complex in Drosophila: the generation and development of distinct neural subsets. J Comp Neurol 518 1525 1541
153. WilliamsJLD 1975 Anatomical studies of the insect central nervous system: a ground plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). Journal of Zoology, London 176 67 86
154. WegerhoffRBreidbachO 1992 Structure and development of the larval central complex in a holometabolous insect, the beetle Tenebrio molitor. Cell Tissue Res 268 341 358
155. ChangTMazottaJDumstreiKDumitrescuAHartensteinV 2001 Dpp and Hh signaling in the Drosophila embryonic eye field. Development 128 4691 4704
156. ChangTShyDHartensteinV 2003 Antagonistic relationship between Dpp and EGFR signaling in Drosophila head patterning. Dev Biol 263 103 113
157. FinkelsteinRSmouseDCapaciTMSpradlingACPerrimonN 1990 The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev 4 1516 1527
158. PignoniFBaldarelliRMSteingrimssonEDiazRJPatapoutianA 1990 The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 62 151 163
159. IrimiaMPineiroCMaesoIGomez-SkarmetaJLCasaresF 2010 Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizer. Evodevo 1 7
160. YangXZarinkamarNBaoRFriedrichM 2009 Probing the Drosophila retinal determination gene network in Tribolium (I): The early retinal genes dachshund, eyes absent and sine oculis. Dev Biol 333 202 214
161. KotkampKKlinglerMSchoppmeierM 2010 Apparent role of Tribolium orthodenticle in anteroposterior blastoderm patterning largely reflects novel functions in dorsoventral axis formation and cell survival. Development 137 1853 1862
162. SchröderR 2003 The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422 621 625
163. ChenGHandelKRothS 2000 The maternal NF-kappaB/dorsal gradient of Tribolium castaneum: dynamics of early dorsoventral patterning in a short-germ beetle. Development 127 5145 5156
164. Sanchez-SalazarJPletcherMTBennettRBrownSJDandamudiTJ 1996 The Tribolium decapentaplegic gene is similar in sequence, structure, and expression to the Drosophila dpp gene. Dev Genes Evol 206 237 246
165. TechnauGMCampos-OrtegaJA 1985 Fate-mapping in wildtype Drosophila melanogaster. II. Injections of horseradish peroxidase in cells of the early gastrula stage. Roux's Arch Dev Biol 194 196 212
166. RothS 2004 Gastrulation in other insects. SternCD Gastrulation: From cells to Embryo New York Cold Spring Harbor Laboratory Press 105 121
167. BirkanMSchaeperNDChipmanAD 2011 Early patterning and blastodermal fate map of the head in the milkweed bug Oncopeltus fasciatus. Evol Dev 13 436 447
168. ZuberMEGestriGViczianASBarsacchiGHarrisWA 2003 Specification of the vertebrate eye by a network of eye field transcription factors. Development 130 5155 5167
169. MacdonaldRBarthKAXuQHolderNMikkolaI 1995 Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121 3267 3278
170. GengXSpeirsCLagutinOInbalALiuW 2008 Haploinsufficiency of Six3 fails to activate Sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev Cell 15 236 247
171. Tessmar-RaibleK 2007 The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. Semin Cell Dev Biol 18 492 501
172. CohenMMJr 2006 Holoprosencephaly: clinical, anatomic, and molecular dimensions. Birth Defects Res A Clin Mol Teratol 76 658 673
173. TraunerJSchinkoJLorenzenMDShippyTDWimmerEA 2009 Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biol 7 73
174. KumarSNeiMDudleyJTamuraK 2008 MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9 299 306
175. TamuraKDudleyJNeiMKumarS 2007 MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24 1596 1599
176. SaitouNNeiM 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406 425
177. FelsensteinJ 1985 Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39 783 791
178. ZuckerkandlEPaulingL 1965 Evolutionary divergence and convergence in proteins. BrysonVVogelHJ Evolving Genes and Proteins New York Academic Press 97 166
179. BolognesiRBeermannAFarzanaLWittkoppNLutzR 2008 Tribolium Wnts: evidence for a larger repertoire in insects with overlapping expression patterns that suggest multiple redundant functions in embryogenesis. Dev Genes Evol 218 193 202
180. SchinkoJPosnienNKittelmannSKoniszewskiNBucherG 2009 Single and Double Whole-Mount In Situ Hybridization in Red Flour Beetle (Tribolium) Embryos. Cold Spring Harbor Protocols 2009 pdb.prot5258-
181. WohlfromHSchinkoJBKlinglerMBucherG 2006 Maintenance of segment and appendage primordia by the Tribolium gene knodel. Mech Dev 123 430 439
182. BrownSJMahaffeyJPLorenzenMDDenellREMahaffeyJW 1999 Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol Dev 1 11 15
183. BucherGScholtenJKlinglerM 2002 Parental RNAi in Tribolium (Coleoptera). Curr Biol 12 R85 86
184. PosnienNSchinkoJGrossmannDShippyTDKonopovaB 2009 RNAi in the red flour beetle (Tribolium). Cold Spring Harb Protoc 2009 pdb prot5256
185. BeermannASchroderR 2004 Functional stability of the aristaless gene in appendage tip formation during evolution. Dev Genes Evol 214 303 308
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Targeted Proteolysis of Plectin Isoform 1a Accounts for Hemidesmosome Dysfunction in Mice Mimicking the Dominant Skin Blistering Disease EBS-Ogna
- The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity
- The FGFR4-G388R Polymorphism Promotes Mitochondrial STAT3 Serine Phosphorylation to Facilitate Pituitary Growth Hormone Cell Tumorigenesis
- Hierarchical Generalized Linear Models for Multiple Groups of Rare and Common Variants: Jointly Estimating Group and Individual-Variant Effects