The Major Roles of DNA Polymerases Epsilon and Delta at the Eukaryotic Replication Fork Are Evolutionarily Conserved
Coordinated replication of eukaryotic genomes is intrinsically asymmetric, with continuous leading strand synthesis preceding discontinuous lagging strand synthesis. Here we provide two types of evidence indicating that, in fission yeast, these two biosynthetic tasks are performed by two different replicases. First, in Schizosaccharomyces pombe strains encoding a polδ-L591M mutator allele, base substitutions in reporter genes placed in opposite orientations relative to a well-characterized replication origin are strand-specific and distributed in patterns implying that Polδ is primarily involved in lagging strand replication. Second, in strains encoding a polε-M630F allele and lacking the ability to repair rNMPs in DNA due to a defect in RNase H2, rNMPs are selectively observed in nascent leading strand DNA. The latter observation demonstrates that abundant rNMP incorporation during replication can be tolerated and that they are normally removed in an RNase H2-dependent manner. This provides strong physical evidence that Polε is the primary leading strand replicase. Collectively, these data and earlier results in budding yeast indicate that the major roles of Polδ and Polε at the eukaryotic replication fork are evolutionarily conserved.
Vyšlo v časopise:
The Major Roles of DNA Polymerases Epsilon and Delta at the Eukaryotic Replication Fork Are Evolutionarily Conserved. PLoS Genet 7(12): e32767. doi:10.1371/journal.pgen.1002407
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002407
Souhrn
Coordinated replication of eukaryotic genomes is intrinsically asymmetric, with continuous leading strand synthesis preceding discontinuous lagging strand synthesis. Here we provide two types of evidence indicating that, in fission yeast, these two biosynthetic tasks are performed by two different replicases. First, in Schizosaccharomyces pombe strains encoding a polδ-L591M mutator allele, base substitutions in reporter genes placed in opposite orientations relative to a well-characterized replication origin are strand-specific and distributed in patterns implying that Polδ is primarily involved in lagging strand replication. Second, in strains encoding a polε-M630F allele and lacking the ability to repair rNMPs in DNA due to a defect in RNase H2, rNMPs are selectively observed in nascent leading strand DNA. The latter observation demonstrates that abundant rNMP incorporation during replication can be tolerated and that they are normally removed in an RNase H2-dependent manner. This provides strong physical evidence that Polε is the primary leading strand replicase. Collectively, these data and earlier results in budding yeast indicate that the major roles of Polδ and Polε at the eukaryotic replication fork are evolutionarily conserved.
Zdroje
1. GargPBurgersPM 2005 DNA polymerases that propagate the eukaryotic DNA replication fork. Crit Rev Biochem Mol Biol 40 115 128
2. JohnsonAO'DonnellM 2005 Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74 283 315
3. KunkelTA 2009 Evolving views of DNA replication (in)fidelity. Cold Spring Harb Symp Quant Biol 74 91 101
4. KunkelTABebenekK 2000 DNA replication fidelity. Annu Rev Biochem 69 497 529
5. Nick McElhinnySAGordeninDAStithCMBurgersPMKunkelTA 2008 Division of labor at the eukaryotic replication fork. Mol Cell 30 137 144
6. Nick McElhinnySAStithCMBurgersPMKunkelTA 2007 Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 282 2324 2332
7. PursellZFIsozILundstromEBJohanssonEKunkelTA 2007 Regulation of B family DNA polymerase fidelity by a conserved active site residue: characterization of M644W, M644L and M644F mutants of yeast DNA polymerase epsilon. Nucleic Acids Res 35 3076 3086
8. PursellZFIsozILundstromEBJohanssonEKunkelTA 2007 Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317 127 130
9. BurgersPM 2009 Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284 4041 4045
10. KunkelTABurgersPM 2008 Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18 521 527
11. SchmittMWVenkatesanRNPillaireMJHoffmannJSSidorovaJM 2010 Active site mutations in mammalian DNA polymerase delta alter accuracy and replication fork progression. J Biol Chem 285 32264 32272
12. SchmittMWMatsumotoYLoebLA 2009 High fidelity and lesion bypass capability of human DNA polymerase delta. Biochimie 91 1163 1172
13. NiimiALimsirichaikulSYoshidaSIwaiSMasutaniC 2004 Palm mutants in DNA polymerases alpha and eta alter DNA replication fidelity and translesion activity. Mol Cell Biol 24 2734 2746
14. SakamotoANStoneJEKisslingGEMcCullochSDPavlovYI 2007 Mutator alleles of yeast DNA polymerase zeta. DNA Repair (Amst) 6 1829 1838
15. Nick McElhinnySAKumarDClarkABWattDLWattsBE 2010 Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6 774 781
16. Nick McElhinnySAWattsBEKumarDWattDLLundstromEB 2010 Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc Natl Acad Sci U S A 107 4949 4954
17. WatsonATGarciaVBoneNCarrAMArmstrongJ 2008 Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe. Gene 407 63 74
18. FraserJLNeillEDaveyS 2003 Fission yeast Uve1 and Apn2 function in distinct oxidative damage repair pathways in vivo. DNA Repair (Amst) 2 1253 1267
19. DubeyDDZhuJCarlsonDLSharmaKHubermanJA 1994 Three ARS elements contribute to the ura4 replication origin region in the fission yeast, Schizosaccharomyces pombe. EMBO J 13 3638 3647
20. PatelPKArcangioliBBakerSPBensimonARhindN 2006 DNA replication origins fire stochastically in fission yeast. Mol Biol Cell 17 308 316
21. DaiJChuangRYKellyTJ 2005 DNA replication origins in the Schizosaccharomyces pombe genome. Proc Natl Acad Sci U S A 102 337 342
22. FriedmanKLBrewerBJ 1995 Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods Enzymol 262 613 627
23. VenkatesanRNHsuJJLawrenceNAPrestonBDLoebLA 2006 Mutator phenotypes caused by substitution at a conserved motif A residue in eukaryotic DNA polymerase delta. J Biol Chem 281 4486 4494
24. StoneJEKisslingGELujanSARogozinIBStithCM 2009 Low-fidelity DNA synthesis by the L979F mutator derivative of Saccharomyces cerevisiae DNA polymerase zeta. Nucleic Acids Res 37 3774 3787
25. JinYHObertRBurgersPMKunkelTAResnickMA 2001 The 3′→5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc Natl Acad Sci U S A 98 5122 5127
26. GargPStithCMSabouriNJohanssonEBurgersPM 2004 Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev 18 2764 2773
27. PavlovYIFrahmCNick McElhinnySANiimiASuzukiM 2006 Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 16 202 207
28. BrownJBrownTFoxKR 2001 Affinity of mismatch-binding protein MutS for heteroduplexes containing different mismatches. Biochem J 354 627 633
29. SuSSLahueRSAuKGModrichP 1988 Mispair specificity of methyl-directed DNA mismatch correction in vitro. J Biol Chem 263 6829 6835
30. PavlovYIShcherbakovaPV 2010 DNA polymerases at the eukaryotic fork-20 years later. Mutat Res 685 45 53
31. LiLMurphyKMKanevetsUReha-KrantzLJ 2005 Sensitivity to phosphonoacetic acid: a new phenotype to probe DNA polymerase delta in Saccharomyces cerevisiae. Genetics 170 569 580
32. CaiHYuHMcEnteeKKunkelTAGoodmanMF 1995 Purification and properties of wild-type and exonuclease-deficient DNA polymerase II from Escherichia coli. J Biol Chem 270 15327 15335
33. VenkatesanRNTreutingPMFullerEDGoldsbyRENorwoodTH 2007 Mutation at the polymerase active site of mouse DNA polymerase delta increases genomic instability and accelerates tumorigenesis. Mol Cell Biol 27 7669 7682
34. ClarkABLujanSAKisslingGEKunkelTA 2011 Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase varepsilon. DNA Repair (Amst) 10 476 482
35. KestiTFlickKKeranenSSyvaojaJEWittenbergC 1999 DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3 679 685
36. FengWD'UrsoG 2001 Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol Cell Biol 21 4495 4504
37. KimNHuangSNWilliamsJSLiYCClarkAB 2011 Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332 1561 1564
38. VengrovaSDalgaardJZ 2004 RNase-sensitive DNA modification(s) initiates Schizo. pombe mating-type switching. Genes Dev 18 794 804
39. KuramaeEERobertVSnelBBoekhoutT 2006 Conflicting phylogenetic position of Schizosaccharomyces pombe. Genomics 88 387 393
40. SipiczkiM 2000 Where does fission yeast sit on the tree of life? Genome Biol 1 REVIEWS 1011 1011.1014
41. MorenoSKlarANurseP 1991 Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194 795 823
42. FosterPL 2006 Methods for determining spontaneous mutation rates. Methods Enzymol 409 195 213
43. Lea DaCCA 1949 The distribution of the numbers of mutants in bacterial populations. J Genetics 49 264 285
44. ArcangioliB 1998 A site- and strand-specific DNA break confers asymmetric switching potential in fission yeast. EMBO J 17 4503 4510
45. LambertSWatsonASheedyDMMartinBCarrAM 2005 Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121 689 702
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Targeted Proteolysis of Plectin Isoform 1a Accounts for Hemidesmosome Dysfunction in Mice Mimicking the Dominant Skin Blistering Disease EBS-Ogna
- The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity
- The FGFR4-G388R Polymorphism Promotes Mitochondrial STAT3 Serine Phosphorylation to Facilitate Pituitary Growth Hormone Cell Tumorigenesis
- Hierarchical Generalized Linear Models for Multiple Groups of Rare and Common Variants: Jointly Estimating Group and Individual-Variant Effects