#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments


Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.


Vyšlo v časopise: Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments. PLoS Genet 7(12): e32767. doi:10.1371/journal.pgen.1002430
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002430

Souhrn

Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.


Zdroje

1. MojzsisSJArrheniusGMcKeeganKDHarrisonTMNutmanAP 1996 Evidence for life on Earth before 3,800 million years ago. Nature 384 55 59

2. WatanabeYMartiniJEOhmotoH 2000 Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature 408 574 578

3. BattistuzziFUHedgesSB 2009 A major clade of prokaryotes with ancient adaptations to life on land. Mol Biol Evol 26 335 343

4. KettlerGCMartinyACHuangKZuckerJColemanML 2007 Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet 3 e231 doi:10.1371/journal.pgen.0030231

5. OkonYLabandera-GonzalezCA 1994 Agronomic applications of Azospirillum: An evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26 1591 1601

6. SteenhoudtOVanderleydenJ 2000 Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24 487 506

7. KanekoTMinamisawaKIsawaTNakatsukasaHMitsuiH 2010 Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17 37 50

8. Martin-DidonetCCChubatsuLSSouzaEMKleinaMRegoFG 2000 Genome structure of the genus Azospirillum. J Bacteriol 182 4113 4116

9. HarrisonPWLowerRPKimNKYoungJP 2010 Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 18 141 148

10. GonzalezVSantamariaRIBustosPHernandez-GonzalezIMedrano-SotoA 2006 The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103 3834 3839

11. VialLLavireCMavinguiPBlahaDHauratJ 2006 Phase variation and genomic architecture changes in Azospirillum. J Bacteriol 188 5364 5373

12. KooninEVMakarovaKSAravindL 2001 Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55 709 742

13. TatusovRLNataleDAGarkavtsevIVTatusovaTAShankavaramUT 2001 The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29 22 28

14. DennisPGMillerAJHirschPR 2010 Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72 313 327

15. BoyerMHauratJSamainSSegurensBGavoryF 2008 Bacteriophage prevalence in the genus Azospirillum and analysis of the first genome sequence of an Azospirillum brasilense integrative phage. Appl Environ Microbiol 74 861 874

16. GiraudEMoulinLVallenetDBarbeVCytrynE 2007 Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316 1307 1312

17. KuoCHOchmanH 2009 Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol Direct 4 35

18. KenrickPCranePR 1997 The origin and early evolution of plants on land. Nature 389 33 39

19. RavenJAEdwardsD 2001 Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52 381 401

20. PrasadVStrombergCAAlimohammadianHSahniA 2005 Dinosaur coprolites and the early evolution of grasses and grazers. Science 310 1177 1180

21. XieZUlrichLEZhulinIBAlexandreG 2010 PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis. Proc Natl Acad Sci U S A 107 2235 2240

22. JiangZYBauerCE 1997 Analysis of a chemotaxis operon from Rhodospirillum centenum. J Bacteriol 179 5712 5719

23. BibleANStephensBBOrtegaDRXieZAlexandreG 2008 Function of a chemotaxis-like signal transduction pathway in modulating motility, cell clumping, and cell length in the alphaproteobacterium Azospirillum brasilense. J Bacteriol 190 6365 6375

24. UlrichLEZhulinIB 2010 The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 38 D401 407

25. BuchanACrombieBAlexandreGM 2010 Temporal dynamics and genetic diversity of chemotactic-competent microbial populations in the rhizosphere. Environ Microbiol 12 3171 3184

26. WuichetKZhulinIB 2010 Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3 ra50

27. AssmusBHutzlerPKirchhofGAmannRLawrenceJR 1995 In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61 1013 1019

28. PedrosaFOMonteiroRAWassemRCruzLMAyubRA 2011 Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7 e1002064 doi:10.1371/journal.pgen.1002064

29. DorrJHurekTReinhold-HurekB 1998 Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30 7 17

30. RameyBEKoutsoudisMvon BodmanSBFuquaC 2004 Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7 602 609

31. TomichMPlanetPJFigurskiDH 2007 The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 5 363 375

32. HandelsmanJTiedjeJAlvarez-CohenLAshburnerMCannIKO 2007 The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. National Academies Press, Washington, DC 158

33. Caro-QuinteroADengJAuchtungJBrettarIHofleMG 2011 Unprecedented levels of horizontal gene transfer among spatially co-occurring Shewanella bacteria from the Baltic Sea. ISME J 5 131 140

34. BartolomeBJubeteYMartinezEde la CruzF 1991 Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102 75 78

35. BocsSCruveillerSVallenetDNuelGMedigueC 2003 AMIGene: Annotation of MIcrobial Genes. Nucleic Acids Res 31 3723 3726

36. VallenetDLabarreLRouyZBarbeVBocsS 2006 MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34 53 65

37. SiguierPPerochonJLestradeLMahillonJChandlerM 2006 ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34 D32 36

38. AltschulSFMaddenTLSchafferAAZhangJZhangZ 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 3389 3402

39. KatohKKumaKTohHMiyataT 2005 MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33 511 518

40. GuindonSDufayardJFLefortVAnisimovaMHordijkW 2010 New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59 307 321

41. ColeJRWangQCardenasEFishJChaiB 2009 The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37 D141 145

42. EddySR 1998 Profile hidden Markov models. Bioinformatics 14 755 763

43. TalaveraGCastresanaJ 2007 Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56 564 577

44. HauwaertsDAlexandreGDasSKVanderleydenJZhulinIB 2002 A major chemotaxis gene cluster in Azospirillum brasilense and relationships between chemotaxis operons in alpha-proteobacteria. FEMS Microbiol Lett 208 61 67

45. ThompsonMRChoureyKFroelichJMEricksonBKVerBerkmoesNC 2008 Experimental approach for deep proteome measurements from small-scale microbial biomass samples. Anal Chem 80 9517 9525

46. McDonaldWHOhiRMiyamotoDTMitchisonTJYatesJR 2002 Comparison of three directly coupled HPLC MS/MS strategies for identification of proteins from complex mixtures: single-dimension LC-MS/MS, 2-phase MudPIT, and 3-phase MudPIT. Int J Mass Spectrom 219 245 251

47. WashburnMPWoltersDYatesJR 2001 Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19 242 247

48. WoltersDAWashburnMPYatesJR 2001 An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73 5683 5690

49. PengJMEliasJEThoreenCCLickliderLJGygiSP 2003 Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: The yeast proteome. J Proteome Res 2 43 50

50. EngJKMccormackALYatesJR 1994 An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectr 5 976 989

51. TabbDLMcDonaldWHYatesJR 2002 DTASelect and contrast: Tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 1 21 26

52. WashburnMPFlorensLCarozzaMJSwansonSKFournierM 2006 Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 40 303 311

53. FinnRDMistryJTateJCoggillPHegerA 2010 The Pfam protein families database. Nucleic Acids Res 38 D211 222

54. CantarelBLCoutinhoPMRancurelCBernardTLombardV 2009 The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37 D233 238

55. SukharnikovLOCantwellBJPodarMZhulinIB 2011 Cellulases: ambiguous nonhomologous enzymes in a genomic perspective. Trends Biotechnol 29 473 479

56. WuichetKAlexanderRPZhulinIB 2007 Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol 422 1 31

57. ShawPDPingGDalySLChaCCronanJEJr 1997 Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94 6036 6041

58. ParkSRChoSJYunHD 2000 Cloning and sequencing of pel gene responsible for CMCase activity from Erwinia chrysanthemi PY35. Biosci Biotechnol Biochem 64 925 930

59. AlexeyevMF 1999 The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26 824 826, 828

60. BloembergGVWijfjesAHLamersGEStuurmanNLugtenbergBJ 2000 Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13 1170 1176

61. LykidisAMavromatisKIvanovaNAndersonILandM 2007 Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189 2477 2486

62. QiMJunHSForsbergCW 2007 Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases. Appl Environ Microbiol 73 6098 6105

63. FierobeHPBagnara-TardifCGaudinCGuerlesquinFSauveP 1993 Purification and characterization of endoglucanase C from Clostridium cellulolyticum. Catalytic comparison with endoglucanase A. European journal of biochemistry/FEBS 217 557 565

64. OguraJToyodaAKurosawaTChongALChohnanS 2006 Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp. IB-9374. Biosci Biotechnol Biochem 70 2420 2428

65. BerlemanJEBauerCE 2005 Involvement of a Che-like signal transduction cascade in regulating cyst cell development in Rhodospirillum centenum. Mol Microbiol 56 1457 1466

66. BerlemanJEBauerCE 2005 A che-like signal transduction cascade involved in controlling flagella biosynthesis in Rhodospirillum centenum. Mol Microbiol 55 1390 1402

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#