The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity
RNA–directed DNA methylation (RdDM) is an epigenetic control mechanism driven by small interfering RNAs (siRNAs) that influence gene function. In plants, little is known of the involvement of the RdDM pathway in regulating traits related to immune responses. In a genetic screen designed to reveal factors regulating immunity in Arabidopsis thaliana, we identified NRPD2 as the OVEREXPRESSOR OF CATIONIC PEROXIDASE 1 (OCP1). NRPD2 encodes the second largest subunit of the plant-specific RNA Polymerases IV and V (Pol IV and Pol V), which are crucial for the RdDM pathway. The ocp1 and nrpd2 mutants showed increases in disease susceptibility when confronted with the necrotrophic fungal pathogens Botrytis cinerea and Plectosphaerella cucumerina. Studies were extended to other mutants affected in different steps of the RdDM pathway, such as nrpd1, nrpe1, ago4, drd1, rdr2, and drm1drm2 mutants. Our results indicate that all the mutants studied, with the exception of nrpd1, phenocopy the nrpd2 mutants; and they suggest that, while Pol V complex is required for plant immunity, Pol IV appears dispensable. Moreover, Pol V defective mutants, but not Pol IV mutants, show enhanced disease resistance towards the bacterial pathogen Pseudomonas syringae DC3000. Interestingly, salicylic acid (SA)–mediated defenses effective against PsDC3000 are enhanced in Pol V defective mutants, whereas jasmonic acid (JA)–mediated defenses that protect against fungi are reduced. Chromatin immunoprecipitation analysis revealed that, through differential histone modifications, SA–related defense genes are poised for enhanced activation in Pol V defective mutants and provide clues for understanding the regulation of gene priming during defense. Our results highlight the importance of epigenetic control as an additional layer of complexity in the regulation of plant immunity and point towards multiple components of the RdDM pathway being involved in plant immunity based on genetic evidence, but whether this is a direct or indirect effect on disease-related genes is unclear.
Vyšlo v časopise:
The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity. PLoS Genet 7(12): e32767. doi:10.1371/journal.pgen.1002434
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002434
Souhrn
RNA–directed DNA methylation (RdDM) is an epigenetic control mechanism driven by small interfering RNAs (siRNAs) that influence gene function. In plants, little is known of the involvement of the RdDM pathway in regulating traits related to immune responses. In a genetic screen designed to reveal factors regulating immunity in Arabidopsis thaliana, we identified NRPD2 as the OVEREXPRESSOR OF CATIONIC PEROXIDASE 1 (OCP1). NRPD2 encodes the second largest subunit of the plant-specific RNA Polymerases IV and V (Pol IV and Pol V), which are crucial for the RdDM pathway. The ocp1 and nrpd2 mutants showed increases in disease susceptibility when confronted with the necrotrophic fungal pathogens Botrytis cinerea and Plectosphaerella cucumerina. Studies were extended to other mutants affected in different steps of the RdDM pathway, such as nrpd1, nrpe1, ago4, drd1, rdr2, and drm1drm2 mutants. Our results indicate that all the mutants studied, with the exception of nrpd1, phenocopy the nrpd2 mutants; and they suggest that, while Pol V complex is required for plant immunity, Pol IV appears dispensable. Moreover, Pol V defective mutants, but not Pol IV mutants, show enhanced disease resistance towards the bacterial pathogen Pseudomonas syringae DC3000. Interestingly, salicylic acid (SA)–mediated defenses effective against PsDC3000 are enhanced in Pol V defective mutants, whereas jasmonic acid (JA)–mediated defenses that protect against fungi are reduced. Chromatin immunoprecipitation analysis revealed that, through differential histone modifications, SA–related defense genes are poised for enhanced activation in Pol V defective mutants and provide clues for understanding the regulation of gene priming during defense. Our results highlight the importance of epigenetic control as an additional layer of complexity in the regulation of plant immunity and point towards multiple components of the RdDM pathway being involved in plant immunity based on genetic evidence, but whether this is a direct or indirect effect on disease-related genes is unclear.
Zdroje
1. MatzkeMKannoTDaxingerLHuettelBMatzkeAJ 2009 RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol [doi:10.1016/j.ceb.2009.01.025]
2. LawJAJacobsenSE 2010 Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev Gent 11 204 220
3. OnoderaYHaagJRReamTNunesPCPontesO 2005 Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120 613 622
4. PontierDYahubyanGVegaDBulskiASaez-VasquezJ 2005 Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19 2030 2040
5. ReamTSHaagJRWierzbickiATNicoraCDNorbeck 2009 Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA Polymerase II. Mol Cell 33 192 203
6. ChanSWZilbermanDXieZJohansenLKCarringtonJC 2004 RNA silencing genes control de novo DNA methylation. Science 303 1336
7. XieZJohansenLKGustafsonAMKasschauKDLellisAD 2004 Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2 e104 doi:10.1371/journal.pbio.0020104
8. ZilbermanDCaoXJacobsenSE 2003 ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299 716 719
9. ZilbermanDCaoXJohansenLKXieZCarringtonJC 2004 Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol 14 1214 1220
10. QiYHeXWangXJKohanyOJurkaJ 2006 Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443 1008 1012
11. ChinnusamyVZhuJK 2009 Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12 133 139
12. Katiyar-AgarwalSJinH 2010 Role of Small RNAs in Host-Microbe Interactions. Annu Rev Phytopathol 48 225 46
13. NavarroLDunoyerPJayFArnoldBDharmasiriN 2006 A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312 436 439
14. FahlgrenNHowellMDKasschauKDChapmanEJSullivanCM 2007 High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2 e219 doi:10.1371/journal.pone.0000219
15. NavarroLJayFNomuraKHeSYVoinnetO 2008 Suppression of the microRNA pathway by bacterial effector proteins. Science 321 964 967
16. LuSSunYHAmersonHChiangVL 2007 MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51 1077 1098
17. HeX-FFangY-YFengLGuoH-S 2008 Characterization of conserved and novel microRNAs and their targets, including aTuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582 2445 2452
18. Ruiz-FerrerVVoinnetO 2009 Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60 485 510
19. Katiyar-AgarwalSGaoSVivian-SmithAJinH 2007 A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21 3123 3134
20. Katiyar-AgarwalSMorganRDahlbeckDBorsaniOVillegasAJr 2006 A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA 103 18002 18007
21. YiHRichardsEJ 2007 A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19 2929 2939
22. CoegoARamírezVGilMJFlorsVMauch-ManiB 2005 An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. Plant Cell 17 2123 2137
23. AgorioAVeraP 2007 ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell 19 3778 3790
24. CoegoARamírezVEllulPMaydaEVeraP 2005 The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. Plant J 42 283 293
25. RamírezVCoegoALópezAAgorioAFlorsV 2009 Drought tolerance in Arabidopsis is controlled by the OCP3 disease resistance regulator. Plant J 58 578 591
26. RamírezVVan der EntSGarcía-AndradeJCoegoAPieterseCM 2010 OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. Plant Biol 10 199
27. CaoHGlazebrookJClarkeJDVolkoSDongX 1997 The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88 57 63
28. HaagJRPontesOPikaardCS 2009 Metal A and metal B sites of nuclear RNA polymerase Pol IV and Pol V are required for siRNA-dependent DNA methylation and gene silencing. PLoS ONE 4 e4110 doi:10.1371/journal.pone.0004110
29. GaoZLiuH-LDaxingerLPontesOHeX 2010 An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465 106 109
30. LawJAAusinIJohnsonLMVashishtAAZhuJ-K 2010 A protein complex required for Polymerase V transcripts and RNA directed DNA methylation in Arabidopsis. Curr Biol 20 951 956
31. BenderJ 2004 DNA methylation and epigenetics. Annu Rev Plant Biol 55 41 68
32. HamiltonAVoinnetOChappellLBaulcombeD 2002 Two classes of short interfering RNA in RNA silencing. EMBO J 21 4671 4679
33. RushtonPJSomssichIERinglerPShenQJ 2010 WRKY transcription factors. Trends Plant Sci 15 247 258
34. DongJChenCChenZ 2003 Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51 21 37
35. CaoXJacobsenSE 2002 Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci USA 99 16491 16498
36. WierzbickiATHaagJRPikaardCS 2008 Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135 635 648
37. PontesOCosta-NunesPVithayathilPPikaardCS 2009 RNA polymerase V functions in Arabidopsis interphase heterochromatin organization independently of the 24-nt siRNA-directed DNA methylation pathway. Mol Plant 2 700 710
38. DouetJTutoisSTourmenteS 2009 A Pol V – Mediated Silencing, Independent of RNA – Directed DNA Methylation, Applies to 5S rDNA. PLoS Genet 5 e1000690 doi:10.1371/journal.pgen.1000690
39. JaskiewiczMConrathUPeterhänselC 2011 Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12 50 55
40. PokholokDKHarbisonCTLevineSColeMHannettNM 2005 Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122 517 27
41. PontvianneFBlevinsTPikaardCS 2010 Arabidopsis histone lysin methyltransferases. Adv Bot Res 1; 53 1 22
42. KannoTKannoYSiegelRMJangMKLenardoMJ 2004 Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 13 33 43Kanno et al, 2004;
43. VermeulenMMulderKWDenissovSPijnappelWWvan SchaikFM 2007 Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131 58 69
44. DurrantWEDongX 2004 Systemic acquired resistance. Annu Rev Phytopathol 42 185 209
45. KoornneelAPieterseCMJ 2008 Cross Talk in Defense Signaling. Plant Physiol 146 839 844
46. SpoelSHJohnsonJSDongX 2007 Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104 18842 18847
47. HaringMOffermannSDankerTHorstIPeterhanselC 2007 Chromatin immunoprecipitation: quantitative analysis and data normalization. Plant Methods 2 11
48. BellCJEckerJR 1994 Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19 137 144
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Targeted Proteolysis of Plectin Isoform 1a Accounts for Hemidesmosome Dysfunction in Mice Mimicking the Dominant Skin Blistering Disease EBS-Ogna
- The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity
- The FGFR4-G388R Polymorphism Promotes Mitochondrial STAT3 Serine Phosphorylation to Facilitate Pituitary Growth Hormone Cell Tumorigenesis
- Hierarchical Generalized Linear Models for Multiple Groups of Rare and Common Variants: Jointly Estimating Group and Individual-Variant Effects