#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Widespread Cotranslational Formation of Protein Complexes


Most cellular processes are conducted by multi-protein complexes. However, little is known about how these complexes are assembled. In particular, it is not known if they are formed while one or more members of the complexes are being translated (cotranslational assembly). We took a genomic approach to address this question, by systematically identifying mRNAs associated with specific proteins. In a sample of 31 proteins from Schizosaccharomyces pombe that did not contain RNA–binding domains, we found that ∼38% copurify with mRNAs that encode interacting proteins. For example, the cyclin-dependent kinase Cdc2p associates with the rum1 and cdc18 mRNAs, which encode, respectively, an inhibitor of Cdc2p kinase activity and an essential regulator of DNA replication. Both proteins interact with Cdc2p and are key cell cycle regulators. We obtained analogous results with proteins with different structures and cellular functions (kinesins, protein kinases, transcription factors, proteasome components, etc.). We showed that copurification of a bait protein and of specific mRNAs was dependent on the presence of the proteins encoded by the interacting mRNAs and on polysomal integrity. These results indicate that these observed associations reflect the cotranslational interaction between the bait and the nascent proteins encoded by the interacting mRNAs. Therefore, we show that the cotranslational formation of protein–protein interactions is a widespread phenomenon.


Vyšlo v časopise: Widespread Cotranslational Formation of Protein Complexes. PLoS Genet 7(12): e32767. doi:10.1371/journal.pgen.1002398
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002398

Souhrn

Most cellular processes are conducted by multi-protein complexes. However, little is known about how these complexes are assembled. In particular, it is not known if they are formed while one or more members of the complexes are being translated (cotranslational assembly). We took a genomic approach to address this question, by systematically identifying mRNAs associated with specific proteins. In a sample of 31 proteins from Schizosaccharomyces pombe that did not contain RNA–binding domains, we found that ∼38% copurify with mRNAs that encode interacting proteins. For example, the cyclin-dependent kinase Cdc2p associates with the rum1 and cdc18 mRNAs, which encode, respectively, an inhibitor of Cdc2p kinase activity and an essential regulator of DNA replication. Both proteins interact with Cdc2p and are key cell cycle regulators. We obtained analogous results with proteins with different structures and cellular functions (kinesins, protein kinases, transcription factors, proteasome components, etc.). We showed that copurification of a bait protein and of specific mRNAs was dependent on the presence of the proteins encoded by the interacting mRNAs and on polysomal integrity. These results indicate that these observed associations reflect the cotranslational interaction between the bait and the nascent proteins encoded by the interacting mRNAs. Therefore, we show that the cotranslational formation of protein–protein interactions is a widespread phenomenon.


Zdroje

1. FultonABL'EcuyerT 1993 Cotranslational assembly of some cytoskeletal proteins: implications and prospects. J Cell Sci 105 867 871

2. LuJRobinsonJMEdwardsDDeutschC 2001 T1-T1 interactions occur in ER membranes while nascent Kv peptides are still attached to ribosomes. Biochemistry 40 10934 10946

3. PhartiyalPJonesEMRobertsonGA 2007 Heteromeric assembly of human ether-a-go-go-related gene (hERG) 1a/1b channels occurs cotranslationally via N-terminal interactions. J Biol Chem 282 9874 9882

4. LinLDeMartinoGNGreeneWC 2000 Cotranslational dimerization of the Rel homology domain of NF-kappaB1 generates p50-p105 heterodimers and is required for effective p50 production. Embo J 19 4712 4722

5. NichollsCDMcLureKGShieldsMALeePW 2002 Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J Biol Chem 277 12937 12945

6. AmorimMJMataJ 2009 Rng3, a member of the UCS family of myosin co-chaperones, associates with myosin heavy chains cotranslationally. EMBO Rep 10 186 191

7. HalbachAZhangHWengiAJablonskaZGruberIM 2009 Cotranslational assembly of the yeast SET1C histone methyltransferase complex. Embo J 28 2959 2970

8. MataJ 2010 Genome-wide mapping of myosin protein-RNA networks suggests the existence of specialized protein production sites. Faseb J 24 479 484

9. BuschKEHaylesJNursePBrunnerD 2004 Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev Cell 6 831 843

10. KellerCWoolcockKHessDBuhlerM 2010 Proteomic and functional analysis of the noncanonical poly(A) polymerase Cid14. Rna 16 1124 1129

11. LemieuxCBachandF 2009 Cotranscriptional recruitment of the nuclear poly(A)-binding protein Pab2 to nascent transcripts and association with translating mRNPs. Nucleic Acids Res 37 3418 3430

12. Correa-BordesJNurseP 1995 p25rum1 orders S phase and mitosis by acting as an inhibitor of the p34cdc2 mitotic kinase. Cell 83 1001 1009

13. KellyTJMartinGSForsburgSLStephenRJRussoA 1993 The fission yeast cdc18+ gene product couples S phase to START and mitosis. Cell 74 371 382

14. MillarJBBuckVWilkinsonMG 1995 Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev 9 2117 2130

15. MartinVRodriguez-GabrielMAMcDonaldWHWattSYatesJR3rd 2006 Cip1 and Cip2 are novel RNA-recognition-motif proteins that counteract Csx1 function during oxidative stress. Mol Biol Cell 17 1176 1183

16. KonNKrawchukMDWarrenBGSmithGRWahlsWP 1997 Transcription factor Mts1/Mts2 (Atf1/Pcr1, Gad7/Pcr1) activates the M26 meiotic recombination hotspot in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 94 13765 13770

17. MonahanBJVillenJMargueratSBahlerJGygiSP 2008 Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat Struct Mol Biol 15 873 880

18. ShevchenkoARoguevASchaftDBuchananLHabermannB 2008 Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol 9 R167

19. KominamiKTodaT 1997 Fission yeast WD-repeat protein pop1 regulates genome ploidy through ubiquitin-proteasome-mediated degradation of the CDK inhibitor Rum1 and the S-phase initiator Cdc18. Genes Dev 11 1548 1560

20. LacknerDHBeilharzTHMargueratSMataJWattS 2007 A network of multiple regulatory layers shapes gene expression in fission yeast. Mol Cell 26 145 155

21. MittalNScherrerTGerberAPJangaSC 2010 Interplay between Posttranscriptional and Posttranslational Interactions of RNA-Binding Proteins. J Mol Biol

22. ScherrerTMittalNJangaSCGerberAP 2010 A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PLoS ONE 5 e15499 doi:10.1371/journal.pone.0015499

23. TsvetanovaNGKlassDMSalzmanJBrownPO 2010 Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS ONE 5 e12671 doi:10.1371/journal.pone.0012671

24. LawrenceCLMaekawaHWorthingtonJLReiterWWilkinsonCR 2007 Regulation of Schizosaccharomyces pombe Atf1 protein levels by Sty1-mediated phosphorylation and heterodimerization with Pcr1. J Biol Chem 282 5160 5170

25. ForsburgSLRhindN 2006 Basic methods for fission yeast. Yeast 23 173 183

26. BählerJWuJQLongtineMSShahNGMcKenzieA3rd 1998 Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14 943 951

27. TastoJJCarnahanRHMcDonaldWHGouldKL 2001 Vectors and gene targeting modules for tandem affinity purification in Schizosaccharomyces pombe. Yeast 18 657 662

28. KeeneyJBBoekeJD 1994 Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics 136 849 856

29. WilhelmBTMargueratSWattSSchubertFWoodV 2008 Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453 1239 1243

30. AmorimMJCotobalCDuncanCMataJ 2010 Global coordination of transcriptional control and mRNA decay during cellular differentiation. Mol Syst Biol 6 380

31. LyneRBurnsGMataJPenkettCJRusticiG 2003 Whole-genome microarrays of fission yeast: characteristics, accuracy, reproducibility, and processing of array data. BMC Genomics 4 27

32. BrowningHHaylesJMataJAvelineLNurseP 2000 Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast. J Cell Biol 151 15 28

33. SimanisVNurseP 1986 The cell cycle control gene cdc2+ of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell 45 261 268

34. ShiozakiKRussellP 1995 Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378 739 743

35. AslettMWoodV 2006 Gene Ontology annotation status of the fission yeast genome: preliminary coverage approaches 100%. Yeast 23 913 919

36. TakedaTTodaTKominamiKKohnosuAYanagidaM 1995 Schizosaccharomyces pombe atf1+ encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J 14 6193 6208

37. MorrellJLMorphewMGouldKL 1999 A mutant of Arp2p causes partial disassembly of the Arp2/3 complex and loss of cortical actin function in fission yeast. Mol Biol Cell 10 4201 4215

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#