#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

MOV10 RNA Helicase Is a Potent Inhibitor of Retrotransposition in Cells


MOV10 protein, a putative RNA helicase and component of the RNA–induced silencing complex (RISC), inhibits retrovirus replication. We show that MOV10 also severely restricts human LINE1 (L1), Alu, and SVA retrotransposons. MOV10 associates with the L1 ribonucleoprotein particle, along with other RNA helicases including DDX5, DHX9, DDX17, DDX21, and DDX39A. However, unlike MOV10, these other helicases do not strongly inhibit retrotransposition, an activity dependent upon intact helicase domains. MOV10 association with retrotransposons is further supported by its colocalization with L1 ORF1 protein in stress granules, by cytoplasmic structures associated with RNA silencing, and by the ability of MOV10 to reduce endogenous and ectopic L1 expression. The majority of the human genome is repetitive DNA, most of which is the detritus of millions of years of accumulated retrotransposition. Retrotransposons remain active mutagens, and their insertion can disrupt gene function. Therefore, the host has evolved defense mechanisms to protect against retrotransposition, an arsenal we are only beginning to understand. With homologs in other vertebrates, insects, and plants, MOV10 may represent an ancient and innate form of immunity against both infective viruses and endogenous retroelements.


Vyšlo v časopise: MOV10 RNA Helicase Is a Potent Inhibitor of Retrotransposition in Cells. PLoS Genet 8(10): e32767. doi:10.1371/journal.pgen.1002941
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002941

Souhrn

MOV10 protein, a putative RNA helicase and component of the RNA–induced silencing complex (RISC), inhibits retrovirus replication. We show that MOV10 also severely restricts human LINE1 (L1), Alu, and SVA retrotransposons. MOV10 associates with the L1 ribonucleoprotein particle, along with other RNA helicases including DDX5, DHX9, DDX17, DDX21, and DDX39A. However, unlike MOV10, these other helicases do not strongly inhibit retrotransposition, an activity dependent upon intact helicase domains. MOV10 association with retrotransposons is further supported by its colocalization with L1 ORF1 protein in stress granules, by cytoplasmic structures associated with RNA silencing, and by the ability of MOV10 to reduce endogenous and ectopic L1 expression. The majority of the human genome is repetitive DNA, most of which is the detritus of millions of years of accumulated retrotransposition. Retrotransposons remain active mutagens, and their insertion can disrupt gene function. Therefore, the host has evolved defense mechanisms to protect against retrotransposition, an arsenal we are only beginning to understand. With homologs in other vertebrates, insects, and plants, MOV10 may represent an ancient and innate form of immunity against both infective viruses and endogenous retroelements.


Zdroje

1. MooslehnerK, MüllerU, KarlsU, HamannL, HarbersK (1991) Structure and expression of a gene encoding a putative GTP-binding protein identified by provirus integration in a transgenic mouse strain. Mol Cell Biol 11: 886–893.

2. SchniekeA, StuhlmannH, HarbersK, ChumakovI, JaenischR (1983) Endogenous Moloney leukemia virus in nonviremic Mov substrains of mice carries defects in the proviral genome. J Virol 45: 505–513.

3. FurtakV, MulkyA, RawlingsSA, KozhayaL, LeeK, et al. (2010) Perturbation of the P-body component Mov10 inhibits HIV-1 infectivity. PLoS ONE 5: e9081 doi:10.1371/journal.pone.0009081

4. SaitoK, IshizuH, KomaiM, KotaniH, KawamuraY, et al. (2010) Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev 24: 2493–2498 doi:10.1101/gad.1989510

5. HaaseAD, FenoglioS, MuerdterF, GuzzardoPM, CzechB, et al. (2010) Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. Genes Dev 24: 2499–2504 doi:10.1101/gad.1968110

6. FischerSEJ, MontgomeryTA, ZhangC, FahlgrenN, BreenPC, et al. (2011) The ERI-6/7 helicase acts at the first stage of an siRNA amplification pathway that targets recent gene duplications. PLoS Genet 7: e1002369 doi:10.1371/journal.pgen.1002369

7. DalmayT, HorsefieldR, BraunsteinTH, BaulcombeDC (2001) SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. The EMBO Journal 20: 2069–2077 doi:10.1093/emboj/20.8.2069

8. TomariY, DuT, HaleyB, SchwarzDS, BennettR, et al. (2004) RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116: 831–841.

9. OlivieriD, SykoraMM, SachidanandamR, MechtlerK, BrenneckeJ (2010) An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J 29: 3301–3317 doi:10.1038/emboj.2010.212

10. MeisterG, LandthalerM, PetersL, ChenPY, UrlaubH, et al. (2005) Identification of novel argonaute-associated proteins. Curr Biol 15: 2149–2155 doi:10.1016/j.cub.2005.10.048

11. ChendrimadaTP, FinnKJ, JiX, BaillatD, GregoryRI, et al. (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447: 823–828 doi:10.1038/nature05841

12. KozakSL, MarinM, RoseKM, BystromC, KabatD (2006) The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 281: 29105–29119 doi:10.1074/jbc.M601901200

13. Gallois-MontbrunS, KramerB, SwansonCM, ByersH, LynhamS, et al. (2007) Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol 81: 2165–2178 doi:10.1128/JVI.02287-06

14. SchumannGG (2007) APOBEC3 proteins: major players in intracellular defence against LINE-1-mediated retrotransposition. Biochem Soc Trans 35: 637–642 doi:10.1042/BST0350637

15. MalimMH (2009) APOBEC proteins and intrinsic resistance to HIV-1 infection. Philos Trans R Soc Lond, B, Biol Sci 364: 675–687 doi:10.1098/rstb.2008.0185

16. WangX, HanY, DangY, FuW, ZhouT, et al. (2010) Moloney leukemia virus 10 (MOV10) protein inhibits retrovirus replication. J Biol Chem 285: 14346–14355 doi:10.1074/jbc.M110.109314

17. BurdickR, SmithJL, ChaipanC, FriewY, ChenJ, et al. (2010) P body-associated protein Mov10 inhibits HIV-1 replication at multiple stages. J Virol 84: 10241–10253 doi:10.1128/JVI.00585-10

18. LiuZP, NakagawaO, NakagawaM, YanagisawaH, PassierR, et al. (2001) CHAMP, a novel cardiac-specific helicase regulated by MEF2C. Dev Biol 234: 497–509 doi:10.1006/dbio.2001.0277

19. ZhengK, XiolJ, ReuterM, EckardtS, LeuNA, et al. (2010) Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc Natl Acad Sci USA 107: 11841–11846 doi:10.1073/pnas.1003953107

20. FrostRJA, HamraFK, RichardsonJA, QiX, Bassel-DubyR, et al. (2010) MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. Proc Natl Acad Sci USA 107: 11847–11852 doi:10.1073/pnas.1007158107

21. de KoningAPJ, GuW, CastoeTA, BatzerMA, PollockDD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7: e1002384 doi:10.1371/journal.pgen.1002384

22. CordauxR, HedgesDJ, HerkeSW, BatzerMA (2006) Estimating the retrotransposition rate of human Alu elements. Gene 373: 134–137 doi:10.1016/j.gene.2006.01.019

23. LanderES, LintonLM, BirrenB, NusbaumC, ZodyMC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921 doi:10.1038/35057062

24. HancksDC, KazazianHHJr (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22: 191–203.

25. KramerovDA, VassetzkyNS (2011) Origin and evolution of SINEs in eukaryotic genomes. Heredity (Edinb) 107: 487–495 doi:10.1038/hdy.2011.43

26. Roy-EngelAM (2012) LINEs, SINEs and other retroelements: do birds of a feather flock together? Front Biosci 17: 1345–1361.

27. WangH, XingJ, GroverD, HedgesDJ, HanK, et al. (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354: 994–1007 doi:10.1016/j.jmb.2005.09.085

28. HancksDC, GoodierJL, MandalPK, CheungLE, KazazianHHJr (2011) Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 20: 3386–3400 doi:10.1093/hmg/ddr245

29. RaizJ, DamertA, ChiraS, HeldU, KlawitterS, et al. (2011) The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40: 1666–1683.

30. XiongY, EickbushTH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353–3362.

31. GoodierJL, ZhangL, VetterMR, KazazianHHJr (2007) LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol Cell Biol 27: 6469–6483 doi:10.1128/MCB.00332-07

32. DoucetAJ, HulmeAE, SahinovicE, KulpaDA, MoldovanJB, et al. (2010) Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 6: e1001150 doi:10.1371/journal.pgen.1001150

33. KimberlandML, DivokyV, PrchalJ, SchwahnU, BergerW, et al. (1999) Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 8: 1557–1560.

34. OstertagEM, PrakET, DeBerardinisRJ, MoranJV, KazazianHHJr (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28: 1418–1423.

35. KulpaDA, MoranJV (2006) Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 13: 655–660 doi:10.1038/nsmb1107

36. KhazinaE, WeichenriederO (2009) Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc Natl Acad Sci USA 106: 731–736 doi:10.1073/pnas.0809964106

37. LeiboldDM, SwergoldGD, SingerMF, ThayerRE, DombroskiBA, et al. (1990) Translation of LINE-1 DNA elements in vitro and in human cells. Proc Natl Acad Sci USA 87: 6990–6994.

38. GoodierJL, OstertagEM, EnglekaKA, SelemeMC, KazazianHHJr (2004) A potential role for the nucleolus in L1 retrotransposition. Hum Mol Genet 13: 1041–1048 doi:10.1093/hmg/ddh118

39. GoodierJL, MandalPK, ZhangL, KazazianHHJr (2010) Discrete subcellular partitioning of human retrotransposon RNAs despite a common mechanism of genome insertion. Hum Mol Genet 19: 1712–1725 doi:10.1093/hmg/ddq048

40. KedershaN, StoecklinG, AyodeleM, YaconoP, Lykke-AndersenJ, et al. (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169: 871–884 doi:10.1083/jcb.200502088

41. KedershaN, AndersonP (2007) Mammalian stress granules and processing bodies. Meth Enzymol 431: 61–81 doi:10.1016/S0076-6879(07)31005-7

42. LiuJ, Valencia-SanchezMA, HannonGJ, ParkerR (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7: 719–723 doi:10.1038/ncb1274

43. PillaiRS, BhattacharyyaSN, ArtusCG, ZollerT, CougotN, et al. (2005) Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309: 1573–1576 doi:10.1126/science.1115079

44. SenGL, BlauHM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7: 633–636 doi:10.1038/ncb1265

45. El Messaoudi-AubertS, NichollsJ, MaertensGN, BrookesS, BernsteinE, et al. (2010) Role for the MOV10 RNA helicase in polycomb-mediated repression of the INK4a tumor suppressor. Nat Struct Mol Biol 17: 862–868 doi:10.1038/nsmb.1824

46. SimS, YaoJ, WeinbergDE, NiessenS, YatesJR3rd, et al. (2012) The zipcode-binding protein ZBP1 influences the subcellular location of the Ro 60-kDa autoantigen and the noncoding Y3 RNA. RNA 18: 100–110 doi:10.1261/rna.029207.111

47. MoranJV, HolmesSE, NaasTP, DeBerardinisRJ, BoekeJD, et al. (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87: 917–927.

48. GoodierJL, KazazianHHJr (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135: 23–35 doi:10.1016/j.cell.2008.09.022

49. DewannieuxM, EsnaultC, HeidmannT (2003) LINE-mediated retrotransposition of marked Alu sequences. Nature Genetics 35: 41–48 doi:10.1038/ng1223

50. AlischRS, Garcia-PerezJL, MuotriAR, GageFH, MoranJV (2006) Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 20: 210–224 doi:10.1101/gad.1380406

51. AbuduA, WangX, DangY, ZhouT, XiangS-H, et al. (2012) Identification of molecular determinants from Moloney Leukemia Virus 10 Homolog (MOV10) protein for virion packaging and anti-HIV-1 activity. J Biol Chem 287: 1220–1228 doi:10.1074/jbc.M111.309831

52. CaruthersJM, McKayDB (2002) Helicase structure and mechanism. Current Opinion in Struct Biol 12: 123–133 doi:10.1016/S0959-440X(02)00298-1

53. RobbGB, RanaTM (2007) RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol Cell 26: 523–537 doi:10.1016/j.molcel.2007.04.016

54. GregoryRI, YanK-P, AmuthanG, ChendrimadaT, DoratotajB, et al. (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432: 235–240 doi:10.1038/nature03120

55. FukudaT, YamagataK, FujiyamaS, MatsumotoT, KoshidaI, et al. (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9: 604–611 doi:10.1038/ncb1577

56. JalalC, Uhlmann-SchifflerH, StahlH (2007) Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in ribosome biogenesis and cell proliferation. Nucleic Acids Res 35: 3590–3601 doi:10.1093/nar/gkm058

57. WestermarckJ, WeissC, SaffrichR, KastJ, MustiA-M, et al. (2002) The DEXD/H-box RNA helicase RHII/Gu is a co-factor for c-Jun-activated transcription. EMBO J 21: 451–460.

58. HenningD, SoRB, JinR, LauLF, ValdezBC (2003) Silencing of RNA helicase II/Gualpha inhibits mammalian ribosomal RNA production. J Biol Chem 278: 52307–52314 doi:10.1074/jbc.M310846200

59. ShenH (2009) UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export. BMB Rep 42: 185–188.

60. El Messaoudi-AubertS, NichollsJ, MaertensGN, BrookesS, BernsteinE, et al. (2010) Role for the MOV10 RNA helicase in polycomb-mediated repression of the INK4a tumor suppressor. Nat Struct Mol Biol 17: 862–868 doi:10.1038/nsmb.1824

61. MohammadHP, CaiY, McGarveyKM, EaswaranH, Van NesteL, et al. (2009) Polycomb CBX7 promotes initiation of heritable repression of genes frequently silenced with cancer-specific DNA hypermethylation. Cancer Res 69: 6322–6330 doi:10.1158/0008-5472.CAN-09-0065

62. HeX-J, ChenT, ZhuJ-K (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21: 442–465 doi:10.1038/cr.2011.23

63. YangN, KazazianHHJr (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13: 763–771 doi:10.1038/nsmb1141

64. Montoya-DurangoDE, LiuY, TenengI, KalbfleischT, LacyME, et al. (2009) Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res 665: 20–28 doi:10.1016/j.mrfmmm.2009.02.011

65. ReichmannJ, CrichtonJH, MadejMJ, TaggartM, GautierP, et al. (2012) Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells. PLoS Comput Biol 8: e1002486 doi:10.1371/journal.pcbi.1002486

66. SoiferHS, ZaragozaA, PeyvanM, BehlkeMA, RossiJJ (2005) A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon. Nucleic Acids Res 33: 846–856 doi:10.1093/nar/gki223

67. AravinAA, Bourc'hisD (2008) Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev 22: 970–975 doi:10.1101/gad.1669408

68. CarmellMA, GirardA, van de KantHJG, Bourc'hisD, BestorTH, et al. (2007) MIWI2 Is essential for spermatogenesis and repression of transposons in the mouse male germline. Developmental Cell 12: 503–514 doi:10.1016/j.devcel.2007.03.001

69. Kuramochi-MiyagawaS, WatanabeT, GotohK, TotokiY, ToyodaA, et al. (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22: 908–917 doi:10.1101/gad.1640708

70. ReuterM, BerningerP, ChumaS, ShahH, HosokawaM, et al. (2011) Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480: 264–267 doi:10.1038/nature10672

71. Kuramochi-MiyagawaS, WatanabeT, GotohK, TakamatsuK, ChumaS, et al. (2010) MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev 24: 887–892 doi:10.1101/gad.1902110

72. AndersonP, KedershaN (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nature Rev Mol Cell Biol 10: 430–436 doi:10.1038/nrm2694

73. CheckleyMA, NagashimaK, LockettSJ, NyswanerKM, GarfinkelDJ (2010) P-body components are required for Ty1 retrotransposition during assembly of retrotransposition-competent virus-like particles. Mol Cell Biol 30: 382–398 doi:10.1128/MCB.00251-09

74. LuC, ContrerasX, PeterlinBM (2011) P bodies inhibit retrotransposition of endogenous intracisternal a particles. J Virol 85: 6244–6251 doi:10.1128/JVI.02517-10

75. JankowskyE (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36: 19–29 doi:10.1016/j.tibs.2010.07.008

76. DawkinsR, KrebsJR (1979) Arms races between and within species. Proc R Soc Lond B 489–511.

77. MeyersonNR, SawyerSL (2011) Two-stepping through time: mammals and viruses. Trends Microbiol 19: 286–294 doi:10.1016/j.tim.2011.03.006

78. PlanellesV (2012) SAMHD1 Joins the red Queen's court. Cell Host Microbe 11: 103–105 doi:10.1016/j.chom.2012.02.001

79. YangZ (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591 doi:10.1093/molbev/msm088

80. ObbardDJ, JigginsFM, HalliganDL, LittleTJ (2006) Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr Biol 16: 580–585 doi:10.1016/j.cub.2006.01.065

81. BoissinotS, EntezamA, FuranoAV (2001) Selection against deleterious LINE-1-containing loci in the human lineage. Mol Biol Evol 18: 926–935.

82. BoissinotS, FuranoAV (2001) Adaptive evolution in LINE-1 retrotransposons. Mol Biol Evol 18: 2186–2194.

83. BrouhaB, MeischlC, OstertagE, de BoerM, ZhangY, et al. (2002) Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am J Hum Genet 71: 327–336.

84. BergelsonJ, DwyerG, EmersonJJ (2001) Models and data on plant-enemy coevolution. Annu Rev Genet 35: 469–499 doi:10.1146/annurev.genet.35.102401.090954

85. DoolittleRF, FengDF (1992) Tracing the origin of retroviruses. Curr Top Microbiol Immunol 176: 195–211.

86. MalikHS, EickbushTH (2001) Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 11: 1187–1197 doi:10.1101/gr.185101

87. MalikHS, HenikoffS, EickbushTH (2000) Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10: 1307–1318.

88. KunkelTA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82: 488–492.

89. MooneySM, GrandeJP, SalisburyJL, JanknechtR (2010) Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry 49: 1–10 doi:10.1021/bi901263m

90. CoufalNG, Garcia-PerezJL, PengGE, YeoGW, MuY, et al. (2009) L1 retrotransposition in human neural progenitor cells. Nature 460: 1127–1131 doi:10.1038/nature08248

91. Muñoz-LopezM, Garcia-CañadasM, MaciaA, MorellS, Garcia-PerezJL (2012) Analysis of LINE-1 expression in human pluripotent cells. Methods Mol Biol 873: 113–125 doi:10.1007/978-1-61779-794-1_7

92. KumakiY, OdaM, OkanoM (2008) QUMA: quantification tool for methylation analysis. Nucleic Acids Res 36: W170–175 doi:10.1093/nar/gkn294

93. LöytynojaA, GoldmanN (2010) webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics 11: 579 doi:10.1186/1471-2105-11-579

94. WaterhouseAM, ProcterJB, MartinDMA, ClampM, BartonGJ (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191 doi:10.1093/bioinformatics/btp033

95. TamuraK, PetersonD, PetersonN, StecherG, NeiM, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 doi:10.1093/molbev/msr121

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#