The Contribution of RNA Decay Quantitative Trait Loci to Inter-Individual Variation in Steady-State Gene Expression Levels
Recent gene expression QTL (eQTL) mapping studies have provided considerable insight into the genetic basis for inter-individual regulatory variation. However, a limitation of all eQTL studies to date, which have used measurements of steady-state gene expression levels, is the inability to directly distinguish between variation in transcription and decay rates. To address this gap, we performed a genome-wide study of variation in gene-specific mRNA decay rates across individuals. Using a time-course study design, we estimated mRNA decay rates for over 16,000 genes in 70 Yoruban HapMap lymphoblastoid cell lines (LCLs), for which extensive genotyping data are available. Considering mRNA decay rates across genes, we found that: (i) as expected, highly expressed genes are generally associated with lower mRNA decay rates, (ii) genes with rapid mRNA decay rates are enriched with putative binding sites for miRNA and RNA binding proteins, and (iii) genes with similar functional roles tend to exhibit correlated rates of mRNA decay. Focusing on variation in mRNA decay across individuals, we estimate that steady-state expression levels are significantly correlated with variation in decay rates in 10% of genes. Somewhat counter-intuitively, for about half of these genes, higher expression is associated with faster decay rates, possibly due to a coupling of mRNA decay with transcriptional processes in genes involved in rapid cellular responses. Finally, we used these data to map genetic variation that is specifically associated with variation in mRNA decay rates across individuals. We found 195 such loci, which we named RNA decay quantitative trait loci (“rdQTLs”). All the observed rdQTLs are located near the regulated genes and therefore are assumed to act in cis. By analyzing our data within the context of known steady-state eQTLs, we estimate that a substantial fraction of eQTLs are associated with inter-individual variation in mRNA decay rates.
Vyšlo v časopise:
The Contribution of RNA Decay Quantitative Trait Loci to Inter-Individual Variation in Steady-State Gene Expression Levels. PLoS Genet 8(10): e32767. doi:10.1371/journal.pgen.1003000
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003000
Souhrn
Recent gene expression QTL (eQTL) mapping studies have provided considerable insight into the genetic basis for inter-individual regulatory variation. However, a limitation of all eQTL studies to date, which have used measurements of steady-state gene expression levels, is the inability to directly distinguish between variation in transcription and decay rates. To address this gap, we performed a genome-wide study of variation in gene-specific mRNA decay rates across individuals. Using a time-course study design, we estimated mRNA decay rates for over 16,000 genes in 70 Yoruban HapMap lymphoblastoid cell lines (LCLs), for which extensive genotyping data are available. Considering mRNA decay rates across genes, we found that: (i) as expected, highly expressed genes are generally associated with lower mRNA decay rates, (ii) genes with rapid mRNA decay rates are enriched with putative binding sites for miRNA and RNA binding proteins, and (iii) genes with similar functional roles tend to exhibit correlated rates of mRNA decay. Focusing on variation in mRNA decay across individuals, we estimate that steady-state expression levels are significantly correlated with variation in decay rates in 10% of genes. Somewhat counter-intuitively, for about half of these genes, higher expression is associated with faster decay rates, possibly due to a coupling of mRNA decay with transcriptional processes in genes involved in rapid cellular responses. Finally, we used these data to map genetic variation that is specifically associated with variation in mRNA decay rates across individuals. We found 195 such loci, which we named RNA decay quantitative trait loci (“rdQTLs”). All the observed rdQTLs are located near the regulated genes and therefore are assumed to act in cis. By analyzing our data within the context of known steady-state eQTLs, we estimate that a substantial fraction of eQTLs are associated with inter-individual variation in mRNA decay rates.
Zdroje
1. YangE, van NimwegenE, ZavolanM, RajewskyN, SchroederM, et al. (2003) Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Research 13: 1863–1872 doi:10.1101/gr.1272403.
2. OleksiakMF, ChurchillGA, CrawfordDL (2002) Variation in gene expression within and among natural populations. Nat Genet 32: 261–266 doi:10.1038/ng983.
3. NarsaiR, HowellKA, MillarAH, O'TooleN, SmallI, et al. (2007) Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana. Plant Cell 19: 3418–3436 doi:10.1105/tpc.107.055046.
4. CheungVG, SpielmanRS, EwensKG, WeberTM, MorleyM, et al. (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437: 1365–1369 doi:10.1038/nature04244.
5. LemosB, AraripeLO, FontanillasP, HartlDL (2008) Dominance and the evolutionary accumulation of cis- and trans-effects on gene expression. PNAS 105: 14471–14476 doi:10.1073/pnas.0805160105.
6. SchoenbergDR, MaquatLE (2012) Regulation of cytoplasmic mRNA decay. Nat Rev Genet 13: 246–259 doi:doi:10.1038/nrg3160.
7. BremRB, StoreyJD, WhittleJ, KruglyakL (2005) Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436: 701–703 doi:10.1038/nature03865.
8. GiladY, RifkinSA, PritchardJK (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet 24: 408–415 doi:10.1016/j.tig.2008.06.001.
9. GibsonG, WeirB (2005) The quantitative genetics of transcription. Trends Genet 21: 616–623 doi:10.1016/j.tig.2005.08.010.
10. SchadtEE, MonksSA, DrakeTA, LusisAJ, CheN, et al. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297–302 doi:10.1038/nature01434.
11. GarneauNL, WiluszJ, WiluszCJ (2007) The highways and byways of mRNA decay. Nature Reviews Molecular Cell Biology 8: 113–126 doi:10.1038/nrm2104.
12. StrangerBE, NicaAC, ForrestMS, DimasA, BirdCP, et al. (2007) Population genomics of human gene expression. Nat Genet 39: 1217–1224 doi:10.1038/ng2142.
13. PickrellJK, MarioniJC, PaiAA, DegnerJF, EngelhardtBE, et al. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464: 768–772 doi:10.1038/nature08872.
14. MontgomerySB, SammethM, Gutierrez ArcelusM, LachRP, IngleC, et al. (2010) Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464: 773–777 doi:10.1038/nature08903.
15. GingerichTJ, FeigeJ-J, LaMarreJ (2004) AU-rich elements and the control of gene expression through regulated mRNA stability. Anim Health Res Rev 5: 49–63.
16. MoffattMF, KabeschM, LiangL, DixonAL, StrachanD, et al. (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448: 470–473 doi:10.1038/nature06014.
17. MeisnerN-C, HackermüllerJ, UhlV, AszódiA, JaritzM, et al. (2004) mRNA Openers and Closers: Modulating AU-Rich Element-Controlled mRNA Stability by a Molecular Switch in mRNA Secondary Structure. ChemBioChem 5: 1432–1447 doi:10.1002/cbic.200400219.
18. EmilssonV, ThorleifssonG, ZhangB, LeonardsonAS, ZinkF, et al. (2008) Genetics of gene expression and its effect on disease. Nature 452: 423–428 doi:10.1038/nature06758.
19. BetelD, WilsonM, GabowA, MarksDS, SanderC (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36: D149–53 doi:10.1093/nar/gkm995.
20. KrekA, GrünD, PoyMN, WolfR, RosenbergL, et al. (2005) Combinatorial microRNA target predictions. Nat Genet 37: 495–500 doi:10.1038/ng1536.
21. DixonAL, LiangL, MoffattMF, ChenW, HeathS, et al. (2007) A genome-wide association study of global gene expression. Nat Genet 39: 1202–1207 doi:10.1038/ng2109.
22. LallS, GrünD, KrekA, ChenK, WangY-L, et al. (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16: 460–471 doi:10.1016/j.cub.2006.01.050.
23. FriedmanRC, FarhKK-H, BurgeCB, BartelDP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Research 19: 92–105 doi:10.1101/gr.082701.108.
24. GrimsonA, FarhKK-H, JohnstonWK, Garrett-EngeleP, LimLP, et al. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular Cell 27: 91–105 doi:10.1016/j.molcel.2007.06.017.
25. LewisBP, BurgeCB, BartelDP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20 doi:10.1016/j.cell.2004.12.035.
26. SpasicM, FriedelCC, SchottJ, KrethJ, LeppekK, et al. (2012) Genome-wide assessment of AU-rich elements by the AREScore algorithm. PLoS Genet 8: e1002433 doi:10.1371/journal.pgen.1002433.
27. PastinenT, GeB, HudsonTJ (2006) Influence of human genome polymorphism on gene expression. Hum Mol Genet 15 Spec No 1: R9–16 doi:10.1093/hmg/ddl044.
28. PastinenT (2010) Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet 11: 533–538 doi:10.1038/nrg2815.
29. MajewskiJ, PastinenT (2011) The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet 27: 72–79 doi:10.1016/j.tig.2010.10.006.
30. ElementoO, SlonimN, TavazoieS (2007) A universal framework for regulatory element discovery across all genomes and data types. Molecular Cell 28: 337–350 doi:10.1016/j.molcel.2007.09.027.
31. BellJT, PaiAA, PickrellJK, GaffneyDJ, Pique-RegiR, et al. (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biology 12: R10 doi:10.1186/gb-2011-12-1-r10.
32. DegnerJF, PaiAA, Pique-RegiR, VeyrierasJ-B, GaffneyDJ, et al. (2012) DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482: 390–394 doi:10.1038/nature10808.
33. KasowskiM, GrubertF, HeffelfingerC, HariharanM, AsabereA, et al. (2010) Variation in Transcription Factor Binding Among Humans. Science 328: 232–235 doi:10.1126/science.1183621.
34. LalondeE, HaKCH, WangZ, BemmoA, KleinmanCL, et al. (2011) RNA sequencing reveals the role of splicing polymorphisms in regulating human gene expression. Genome Research 21: 545–554 doi:10.1101/gr.111211.110.
35. LamLT, PickeralOK, PengAC, RosenwaldA, HurtEM, et al. (2001) Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biology 2: 1–11.
36. Alon U (2007) An introduction to systems biology. CRC Press. pp.
37. Dori-BachashM, ShemaE, TiroshI (2011) Coupled Evolution of Transcription and mRNA Degradation. PLoS Biol 9: e1001106 doi:10.1371/journal.pbio.1001106.
38. ShalemO, GroismanB, ChoderM, DahanO, PilpelY (2011) Transcriptome Kinetics Is Governed by a Genome-Wide Coupling of mRNA Production and Degradation: A Role for RNA Pol II. PLoS Genet 7: e1002273 doi:10.1371/journal.pgen.1002273.
39. HuW, SweetTJ, ChamnongpolS, BakerKE, CollerJ (2009) Co-translational mRNA decay in Saccharomyces cerevisiae. Nature 461: 225–229 doi:10.1038/nature08265.
40. DahanO, GingoldH, PilpelY (2011) Regulatory mechanisms and networks couple the different phases of gene expression. Trends Genet 27: 316–322 doi:10.1016/j.tig.2011.05.008.
41. BernsteinJA, KhodurskyAB, LinP-H, Lin-ChaoS, CohenSN (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. PNAS 99: 9697–9702 doi:10.1073/pnas.112318199.
42. CulbertsonMR, LeedsPF (2003) Looking at mRNA decay pathways through the window of molecular evolution. Current Opinions in Genetics & Development 13: 207–214 doi:10.1016/S0959-437X(03)00014-5.
43. WiluszCJ, WormingtonM, PeltzSW (2001) The Cap-to-Tail Guide to mRNA Turnover. Nature Reviews Molecular Cell Biology 2: 237–246.
44. CheadleC, FanJ, Cho-ChungYS, WernerT, RayJ, et al. (2005) Stability regulation of mRNA and the control of gene expression. Ann N Y Acad Sci 1058: 196–204 doi:10.1196/annals.1359.026.
45. HansenKD, LareauLF, BlanchetteM, GreenRE, MengQ, et al. (2009) Genome-wide identification of alternative splice forms down-regulated by nonsense-mediated mRNA decay in Drosophila. PLoS Genet 5: e1000525 doi:10.1371/journal.pgen.1000525.
46. AmraniN, SachsMS, JacobsonA (2006) Early nonsense: mRNA decay solves a translational problem. Nature Reviews Molecular Cell Biology 7: 415–425 doi:10.1038/nrm1942.
47. WiluszCJ, WiluszJ (2004) Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet 20: 491–497 doi:10.1016/j.tig.2004.07.011.
48. StoreyJD, TibshiraniR (2003) Statistical significance for genomewide studies. PNAS 100: 9440–9445 doi:10.1073/pnas.1530509100.
49. SharovaLV, SharovAA, NedorezovT, PiaoY, ShaikN, et al. (2009) Database for mRNA Half-Life of 19 977 Genes Obtained by DNA Microarray Analysis of Pluripotent and Differentiating Mouse Embryonic Stem Cells. DNA Research 16: 45–58 doi:10.1093/dnares/dsn030.
50. Pérez-OrtínJE (2007) Genomics of mRNA turnover. Brief Funct Genomic Proteomic 6: 282–291 doi:10.1093/bfgp/elm029.
51. WangY, LiuCL, StoreyJD, TibshiraniRJ, HerschlagD, et al. (2002) Precision and functional specificity in mRNA decay. PNAS 99: 5860–5865 doi:10.1073/pnas.092538799.
52. RaghavanA, OgilvieRL, ReillyC, AbelsonML, RaghavanS, et al. (2002) Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res 30: 5529–5538.
53. CaliskanM, CusanovichDA, OberC, GiladY (2011) The effects of EBV transformation on gene expression levels and methylation profiles. Hum Mol Genet 20: 1643–1652 doi:10.1093/hmg/ddr041.
54. KhodurskyAB, BernsteinJA (2003) Life after transcription - revisiting the fate of messenger RNA. Trends Genet 19: 113–115.
55. Harel-SharvitL, EldadN, HaimovichG, BarkaiO, DuekL, et al. (2010) RNA Polymerase II Subunits Link Transcription and mRNA Decay to Translation. Cell 143: 552–563 doi:10.1016/j.cell.2010.10.033.
56. TrcekT, LarsonDR, MoldónA, QueryCC, SingerRH (2011) Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast. Cell 147: 1484–1497 doi:10.1016/j.cell.2011.11.051.
57. BregmanA, Avraham-KelbertM, BarkaiO, DuekL, GutermanA, et al. (2011) Promoter elements regulate cytoplasmic mRNA decay. Cell 147: 1473–1483 doi:10.1016/j.cell.2011.12.005.
58. International HapMap Consortium (2003) The International HapMap Project. Nature 426: 789–796 doi:10.1038/nature02168.
59. International HapMap Consortium (2007) FrazerKA, BallingerDG, CoxDR, HindsDA, et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–861 doi:10.1038/nature06258.
60. 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073 doi:10.1038/nature09534.
61. HamaguchiH, FujimotoK, KawamotoT, NoshiroM, MaemuraK, et al. (2004) Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system. Biochem J 382: 43–50 doi:10.1042/BJ20031760.
62. SunH, TanejaR (2000) Stra13 expression is associated with growth arrest and represses transcription through histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms. Proc Natl Acad Sci USA 97: 4058–4063 doi:10.1073/pnas.070526297.
63. FlavinR, PelusoS, NguyenPL, LodaM (2010) Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol 6: 551–562 doi:10.2217/fon.10.11.
64. TsaytlerP, BertolottiA (2012) Exploiting the selectivity of protein phosphatase 1 for pharmacological intervention. FEBS J doi:10.1111/j.1742-4658.2012.08535.x.
65. WangF-M, GalsonDL, RoodmanGD, OuyangH (2011) Resveratrol triggers the pro-apoptotic endoplasmic reticulum stress response and represses pro-survival XBP1 signaling in human multiple myeloma cells. Exp Hematol 39: 999–1006 doi:10.1016/j.exphem.2011.06.007.
66. KakiuchiC, IwamotoK, IshiwataM, BundoM, KasaharaT, et al. (2003) Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 35: 171–175 doi:10.1038/ng1235.
67. WullaertA, HeyninckK, JanssensS, BeyaertR (2006) Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Trends Immunol 27: 533–540 doi:10.1016/j.it.2006.09.003.
68. RabaniM, LevinJZ, FanL, AdiconisX, RaychowdhuryR, et al. (2011) Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nature Biotechnology 29: 436–442 doi:10.1038/nbt.1861.
69. LaiWS, ParkerJS, GrissomSF, StumpoDJ, BlackshearPJ (2006) Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Molecular and Cellular Biology 26: 9196–9208 doi:10.1128/MCB.00945-06.
70. ShalemO, DahanO, LevoM, MartinezMR, FurmanI, et al. (2008) Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Mol Syst Biol 4: 223 doi:10.1038/msb.2008.59.
71. SobellHM (1985) Actinomycin and DNA transcription. Proc Natl Acad Sci USA 82: 5328–5331.
72. CasseC, GiannoniF, NguyenVT, DuboisM-F, BensaudeO (1999) The Transcriptional Inhibitors, Actinomycin D and a-Amanitin, Activate the HIV-1 Promoter and Favor Phosphorylation of the RNA Polymerase II C-terminal Domain. Journal of Biological Chemistry 274: 16097–16106.
73. RadhakrishnanSK, GartelAL (2006) A novel transcriptional inhibitor induces apoptosis in tumor cells and exhibits antiangiogenic activity. Cancer Res 66: 3264–3270 doi:10.1158/0008-5472.CAN-05-3940.
74. ChaoSH, PriceDH (2001) Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 276: 31793–31799 doi:10.1074/jbc.M102306200.
75. BolstadBM, IrizarryRA, AstrandM, SpeedTP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.
76. IrizarryRA, HobbsB, CollinF, Beazer-BarclayYD, AntonellisKJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264 doi:10.1093/biostatistics/4.2.249.
77. DuP, KibbeWA, LinSM (2008) lumi: a pipeline for processing Illumina microarray. Bioinformatics 24: 1547–1548.
78. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760 doi:10.1093/bioinformatics/btp324.
79. GaffneyDJ, VeyrierasJ-B, DegnerJF, RogerP-R, PaiAA, et al. (2012) Dissecting the regulatory architecture of gene expression QTLs. Genome Biology 13: R7 doi:10.1186/gb-2012-13-1-r7.
80. RossJ (1995) mRNA Stability in Mammalian Cells. Microbiological Reviews 59: 423–450.
81. GutierrezRA, EwingRM, CherryJM, GreenPJ (2002) Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis: Rapid decay is associated with a group of touch- and specific clock-controlled genes. PNAS 99: 11513–11518.
82. FlicekP, AmodeMR, BarrellD, BealK, BrentS, et al. (2011) Ensembl 2011. Nucleic Acids Res 39: D800–6 doi:10.1093/nar/gkq1064.
83. SayersEW, BarrettT, BensonDA, BoltonE, BryantSH, et al. (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 39: D38–51 doi:10.1093/nar/gkq1172.
84. BackesC, KellerA, KuentzerJ, KneisslB, ComtesseN, et al. (2007) GeneTrail–advanced gene set enrichment analysis. Nucleic Acids Res 35: W186–92 doi:10.1093/nar/gkm323.
85. CainCE, BlekhmanR, MarioniJC, GiladY (2011) Gene expression differences among primates are associated with changes in a histone epigenetic modification. Genetics 187: 1225–1234 doi:10.1534/genetics.110.126177.
86. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079 doi:10.1093/bioinformatics/btp352.
87. ScheetP, StephensM (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78: 629–644 doi:10.1086/502802.
88. GuanY, StephensM (2008) Practical issues in imputation-based association mapping. PLoS Genet 4: e1000279 doi:10.1371/journal.pgen.1000279.
89. MukherjeeN, CorcoranDL, NusbaumJD, ReidDW, GeorgievS, et al. (2011) Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Molecular Cell 43: 327–339 doi:10.1016/j.molcel.2011.06.007.
90. SchadtEE, MolonyC, ChudinE, HaoK, YangX, et al. (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6: e107 doi:10.1371/journal.pbio.0060107.
91. VeyrierasJ-B, KudaravalliS, KimSY, DermitzakisET, GiladY, et al. (2008) High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet 4: e1000214 doi:10.1371/journal.pgen.1000214.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- A Mutation in the Gene Causes Alternative Splicing Defects and Deafness in the Bronx Waltzer Mouse
- Mutations in (Hhat) Perturb Hedgehog Signaling, Resulting in Severe Acrania-Holoprosencephaly-Agnathia Craniofacial Defects
- Classical Genetics Meets Next-Generation Sequencing: Uncovering a Genome-Wide Recombination Map in
- Regulation of ATG4B Stability by RNF5 Limits Basal Levels of Autophagy and Influences Susceptibility to Bacterial Infection