The Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated.
Vyšlo v časopise:
The Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences. PLoS Genet 8(10): e32767. doi:10.1371/journal.pgen.1002984
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002984
Souhrn
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated.
Zdroje
1. AuryJ-M, JaillonO, DuretL, NoelB, JubinC, et al. (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444: 171–178 doi:nature05230
2. ChalkerDL, YaoM-C (2011) DNA elimination in ciliates: transposon domestication and genome surveillance. Annu Rev Genet 45: 227–246 doi:10.1146/annurev-genet-110410-132432.
3. CoyneRS, Lhuillier-AkakpoM, DuharcourtS (2012) RNA-guided DNA rearrangements in ciliates: is the best genome defense a good offense? Biol Cell Accepted manuscript online doi:10.1111/boc.201100057.
4. SchoeberlUE, MochizukiK (2011) Keeping the soma free of transposons: programmed DNA elimination in ciliates. J Biol Chem 286: 37045–37052 doi:10.1074/jbc.R111.276964.
5. BétermierM (2004) Large-scale genome remodelling by the developmentally programmed elimination of germ line sequences in the ciliate Paramecium. Res Microbiol 155: 399–408.
6. RuizF, KrzywickaA, KlotzC, KellerA, CohenJ, et al. (2000) The SM19 gene, required for duplication of basal bodies in Paramecium, encodes a novel tubulin, eta-tubulin. Curr Biol 10: 1451–1454.
7. HaynesWJ, LingKY, PrestonRR, SaimiY, KungC (2000) The cloning and molecular analysis of pawn-B in Paramecium tetraurelia. Genetics 155: 1105–1117.
8. MayerKM, MikamiK, ForneyJD (1998) A mutation in Paramecium tetraurelia reveals functional and structural features of developmentally excised DNA elements. Genetics 148: 139–149.
9. MayerKM, ForneyJD (1999) A mutation in the flanking 5′-TA-3′ dinucleotide prevents excision of an internal eliminated sequence from the Paramecium tetraurelia genome. Genetics 151: 597–604.
10. MatsudaA, ForneyJD (2005) Analysis of Paramecium tetraurelia A-51 surface antigen gene mutants reveals positive-feedback mechanisms for maintenance of expression and temperature-induced activation. Eukaryotic Cell 4: 1613–1619 doi:10.1128/EC.4.10.1613-1619.2005.
11. YaoMC, ChoiJ, YokoyamaS, AusterberryCF, YaoCH (1984) DNA elimination in Tetrahymena: a developmental process involving extensive breakage and rejoining of DNA at defined sites. Cell 36: 433–440.
12. SavelievSV, CoxMM (2001) Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila. EMBO J 20: 3251–3261 doi:10.1093/emboj/20.12.3251.
13. FillinghamJS, ThingTA, VythilingumN, KeuroghlianA, BrunoD, et al. (2004) A non-long terminal repeat retrotransposon family is restricted to the germ line micronucleus of the ciliated protozoan Tetrahymena thermophila. Eukaryotic Cell 3: 157–169.
14. WuitschickJD, GershanJA, LochowiczAJ, LiS, KarrerKM (2002) A novel family of mobile genetic elements is limited to the germline genome in Tetrahymena thermophila. Nucleic Acids Res 30: 2524–2537.
15. EisenJA, CoyneRS, WuM, WuD, ThiagarajanM, et al. (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4: e286 doi:10.1371/journal.pbio.0040286.
16. YaoM-C, ChaoJ-L (2005) RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559 doi:10.1146/annurev.genet.39.073003.095906.
17. FassJN, JoshiNA, CouvillionMT, BowenJ, GorovskyMA, et al. (2011) Genome-Scale Analysis of Programmed DNA Elimination Sites in Tetrahymena thermophila. G3 1: 515–522 doi:10.1534/g3.111.000927.
18. KlobutcherLA, HerrickG (1995) Consensus inverted terminal repeat sequence of Paramecium IESs: resemblance to termini of Tc1-related and Euplotes Tec transposons. Nucleic Acids Res 23: 2006–2013.
19. KlobutcherLA, HerrickG (1997) Developmental genome reorganization in ciliated protozoa: the transposon link. Prog Nucleic Acid Res Mol Biol 56: 1–62.
20. PlasterkRH, IzsvákZ, IvicsZ (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15: 326–332.
21. BaudryC, MalinskyS, RestituitoM, KapustaA, RosaS, et al. (2009) PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev 23: 2478–2483 doi:10.1101/gad.547309.
22. ChengC-Y, VogtA, MochizukiK, YaoM-C (2010) A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol Biol Cell 21: 1753–1762 doi:10.1091/mbc.E09-12-1079.
23. ParfreyLW, LahrDJG, KnollAH, KatzLA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA 108: 13624–13629 doi:10.1073/pnas.1110633108.
24. GratiasA, BétermierM (2003) Processing of double-strand breaks is involved in the precise excision of paramecium internal eliminated sequences. Mol Cell Biol 23: 7152–7162.
25. MitraR, Fain-ThorntonJ, CraigNL (2008) piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J 27: 1097–1109 doi:10.1038/emboj.2008.41.
26. KapustaA, MatsudaA, MarmignonA, KuM, SilveA, et al. (2011) Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining. PLoS Genet 7: e1002049 doi:10.1371/journal.pgen.1002049.
27. PreerLB, HamiltonG, PreerJRJr (1992) Micronuclear DNA from Paramecium tetraurelia: serotype 51 A gene has internally eliminated sequences. J Protozool 39: 678–682.
28. SteeleCJ, Barkocy-GallagherGA, PreerLB, PreerJRJr (1994) Developmentally excised sequences in micronuclear DNA of Paramecium. Proc Natl Acad Sci USA 91: 2255–2259.
29. DuretL, CohenJ, JubinC, DessenP, GoûtJ-F, et al. (2008) Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: a somatic view of the germline. Genome Res 18: 585–596 doi:gr.074534.107.
30. ArnaizO, SperlingL (2010) ParameciumDB in 2011: new tools and new data for functional and comparative genomics of the model ciliate Paramecium tetraurelia. Nucleic Acids Res Available:http://www.ncbi.nlm.nih.gov.gate1.inist.fr/pubmed/20952411. Accessed 14 December 2010.
31. DuharcourtS, KellerAM, MeyerE (1998) Homology-dependent maternal inhibition of developmental excision of internal eliminated sequences in Paramecium tetraurelia. Mol Cell Biol 18: 7075–7085.
32. DoakTG, DoerderFP, JahnCL, HerrickG (1994) A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci USA 91: 942–946.
33. JacobsME, Sánchez-BlancoA, KatzLA, KlobutcherLA (2003) Tec3, a new developmentally eliminated DNA element in Euplotes crassus. Eukaryotic Cell 2: 103–114.
34. Le MouëlA, ButlerA, CaronF, MeyerE (2003) Developmentally regulated chromosome fragmentation linked to imprecise elimination of repeated sequences in paramecia. Eukaryotic Cell 2: 1076–1090.
35. JaillonO, BouhoucheK, GoutJ-F, AuryJ-M, NoelB, et al. (2008) Translational control of intron splicing in eukaryotes. Nature 451: 359–362 doi:nature06495.
36. DuBoisML, PrescottDM (1997) Volatility of internal eliminated segments in germ line genes of hypotrichous ciliates. Mol Cell Biol 17: 326–337.
37. DubranaK, Le MouëlA, AmarL (1997) Deletion endpoint allele-specificity in the developmentally regulated elimination of an internal sequence (IES) in Paramecium. Nucleic Acids Res 25: 2448–2454.
38. GoutJ-F, KahnD, DuretL (2010) The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution. PLoS Genet 6: e1000944 doi:10.1371/journal.pgen.1000944.
39. ArnaizO, GoutJ-F, BetermierM, BouhoucheK, CohenJ, et al. (2010) Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia. BMC Genomics 11: 547 doi:10.1186/1471-2164-11-547.
40. DuharcourtS, ButlerA, MeyerE (1995) Epigenetic self-regulation of developmental excision of an internal eliminated sequence on Paramecium tetraurelia. Genes Dev 9: 2065–2077.
41. MeyerE, KellerAM (1996) A Mendelian mutation affecting mating-type determination also affects developmental genomic rearrangements in Paramecium tetraurelia. Genetics 143: 191–202.
42. DuharcourtS, LepèreG, MeyerE (2009) Developmental genome rearrangements in ciliates: a natural genomic subtraction mediated by non-coding transcripts. Trends Genet 25: 344–350 doi:10.1016/j.tig.2009.05.007.
43. LepèreG, NowackiM, SerranoV, GoutJ-F, GuglielmiG, et al. (2009) Silencing-associated and meiosis-specific small RNA pathways in Paramecium tetraurelia. Nucleic Acids Res 37: 903–915 doi:10.1093/nar/gkn1018.
44. LepèreG, BétermierM, MeyerE, DuharcourtS (2008) Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes Dev 22: 1501–1512 doi:10.1101/gad.473008.
45. NowackiM, Zagorski-OstojaW, MeyerE (2005) Nowa1p and Nowa2p: novel putative RNA binding proteins involved in trans-nuclear crosstalk in Paramecium tetraurelia. Curr Biol 15: 1616–1628 doi:10.1016/j.cub.2005.07.033.
46. EpsteinLM, ForneyJD (1984) Mendelian and non-mendelian mutations affecting surface antigen expression in Paramecium tetraurelia. Mol Cell Biol 4: 1583–1590.
47. MeyerE (1992) Induction of specific macronuclear developmental mutations by microinjection of a cloned telomeric gene in Paramecium primaurelia. Genes Dev 6: 211–222.
48. SperlingL (2011) Remembrance of things past retrieved from the Paramecium genome. Res Microbiol 162: 587–597 doi:10.1016/j.resmic.2011.02.012.
49. SchleifR (1992) DNA Looping. Annual Review of Biochemistry 61: 199–223 doi:10.1146/annurev.bi.61.070192.001215.
50. LaneD, CavailléJ, ChandlerM (1994) Induction of the SOS response by IS1 transposase. J Mol Biol 242: 339–350 doi:10.1006/jmbi.1994.1585.
51. GoryshinIYu, KilYV, ReznikoffWS (1994) DNA length, bending, and twisting constraints on IS50 transposition. Proc Natl Acad Sci USA 91: 10834–10838.
52. MüllerJ, OehlerS, Müller-HillB (1996) Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator. J Mol Biol 257: 21–29 doi:10.1006/jmbi.1996.0143.
53. BellomyGR, MossingMC, RecordMTJr (1988) Physical properties of DNA in vivo as probed by the length dependence of the lac operator looping process. Biochemistry 27: 3900–3906.
54. BondLM, PetersJP, BeckerNA, KahnJD, MaherLJ (2010) Gene repression by minimal lac loops in vivo. Nucleic Acids Research 38: 8072–8082 doi:10.1093/nar/gkq755.
55. LeeDH, SchleifRF (1989) In vivo DNA loops in araCBAD: size limits and helical repeat. Proceedings of the National Academy of Sciences 86: 476–480.
56. HaykinsonMJ, JohnsonRC (1993) DNA looping and the helical repeat in vitro and in vivo: effect of HU protein and enhancer location on Hin invertasome assembly. EMBO J 12: 2503–2512.
57. BétermierM, DuharcourtS, SeitzH, MeyerE (2000) Timing of developmentally programmed excision and circularization of Paramecium internal eliminated sequences. Mol Cell Biol 20: 1553–1561.
58. GratiasA, LepèreG, GarnierO, RosaS, DuharcourtS, et al. (2008) Developmentally programmed DNA splicing in Paramecium reveals short-distance crosstalk between DNA cleavage sites. Nucleic Acids Res 36: 3244–3251 doi:10.1093/nar/gkn154.
59. Chandler M, Mahillon J (2002) Insertion Sequences Revisited. Mobile DNA II. Washington, D.C.: ASM Press. pp. 305–366.
60. PaullTT, HaykinsonMJ, JohnsonRC (1993) The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev 7: 1521–1534.
61. TianZ, RizzonC, DuJ, ZhuL, BennetzenJL, et al. (2009) Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Res 19: 2221–2230 doi:10.1101/gr.083899.108.
62. GarfinkelDJ, NyswanerKM, StefaniskoKM, ChangC, MooreSP (2005) Ty1 copy number dynamics in Saccharomyces. Genetics 169: 1845–1857 doi:10.1534/genetics.104.037317.
63. LynchM (2006) The origins of eukaryotic gene structure. Mol Biol Evol 23: 450–468 doi:10.1093/molbev/msj050.
64. WerrenJH (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci USA 108 Suppl 2: 10863–10870 doi:10.1073/pnas.1102343108.
65. Bourc'hisD, VoinnetO (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330: 617–622 doi:10.1126/science.1194776.
66. MaloneCD, HannonGJ (2009) Molecular evolution of piRNA and transposon control pathways in Drosophila. Cold Spring Harb Symp Quant Biol 74: 225–234 doi:10.1101/sqb.2009.74.052.
67. BaulcombeD (2004) RNA silencing in plants. Nature 431: 356–363 doi:10.1038/nature02874.
68. PrescottDM, PrescottJD, PrescottRM (2002) Coding properties of macronuclear DNA molecules in Sterkiella nova (Oxytricha nova). Protist 153: 71–77.
69. NowackiM, VijayanV, ZhouY, SchotanusK, DoakTG, et al. (2008) RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature 451: 153–158.
70. PrescottDM (1999) The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates. Nucleic Acids Res 27: 1243–1250.
71. NowackiM, HigginsBP, MaquilanGM, SwartEC, DoakTG, et al. (2009) A functional role for transposases in a large eukaryotic genome. Science 324: 935–938 doi:10.1126/science.1170023.
72. JahnCL, KlobutcherLA (2002) Genome remodeling in ciliated protozoa. Annu Rev Microbiol 56: 489–520 doi:10.1146/annurev.micro.56.012302.160916.
73. JahnCL, DoktorSZ, FrelsJS, JaraczewskiJW, KrikauMF (1993) Structures of the Euplotes crassus Tec1 and Tec2 elements: identification of putative transposase coding regions. Gene 133: 71–78.
74. JaraczewskiJW, JahnCL (1993) Elimination of Tec elements involves a novel excision process. Genes Dev 7: 95–105.
75. KlobutcherLA, TurnerLR, LaPlanteJ (1993) Circular forms of developmentally excised DNA in Euplotes crassus have a heteroduplex junction. Genes Dev 7: 84–94.
76. LambowitzAM, ZimmerlyS (2011) Group II Introns: Mobile Ribozymes that Invade DNA. Cold Spring Harbor Perspectives in Biology 3 Available:http://cshperspectives.cshlp.org/content/3/8/a003616.abstract
77. Sonneborn TM (1974) Paramecium aurelia. Handbook of Genetics. R. King. New York: Plenum Press, Vol. 11. pp. 469–594.
78. GalvaniA, SperlingL (2002) RNA interference by feeding in Paramecium. Trends Genet 18: 11–12.
79. TimmonsL, CourtDL, FireA (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263: 103–112.
80. TimmonsL, FireA (1998) Specific interference by ingested dsRNA. Nature 395: 854 doi:10.1038/27579.
81. GarnierO, SerranoV, DuharcourtS, MeyerE (2004) RNA-mediated programming of developmental genome rearrangements in Paramecium tetraurelia. Mol Cell Biol 24: 7370–7379 doi:10.1128/MCB.24.17.7370-7379.2004.
82. PreerLB, HamiltonG, PreerJRJr (1992) Micronuclear DNA from Paramecium tetraurelia: serotype 51 A gene has internally eliminated sequences. J Protozool 39: 678–682.
83. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Pr. 1659 p.
84. WeigleJ (1966) Assembly of phage lambda in vitro. Proc Natl Acad Sci USA 55: 1462–1466.
85. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760 doi:10.1093/bioinformatics/btp324.
86. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079 doi:10.1093/bioinformatics/btp352.
87. ZerbinoD, BirneyE (2008) Velvet: Algorithms for De Novo Short Read Assembly Using De Bruijn Graphs. Genome Res gr.074492.107 doi:10.1101/gr.074492.107.
88. KentWJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12: 656–664 doi:10.1101/gr.229202.
89. EdgarRC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 doi:10.1093/nar/gkh340.
90. ArnaizO, SperlingL (2011) ParameciumDB in 2011: new tools and new data for functional and comparative genomics of the model ciliate Paramecium tetraurelia. Nucleic Acids Res 39: D632–636 doi:10.1093/nar/gkq918.
91. GascuelO (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14: 685–695.
92. R Development Core Team (2011) R: A language and environment for statistical computing. Available:http://www.R-project.org.
93. ParadisE, ClaudeJ, StrimmerK (2004) APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20: 289–290.
94. CrooksGE, HonG, ChandoniaJ-M, BrennerSE (2004) WebLogo: a sequence logo generator. Genome Res 14: 1188–1190 doi:10.1101/gr.849004.
95. CataniaF, WurmserF, PotekhinAA, PrzybosE, LynchM (2009) Genetic diversity in the Paramecium aurelia species complex. Mol Biol Evol 26: 421–431 doi:10.1093/molbev/msn266.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- A Mutation in the Gene Causes Alternative Splicing Defects and Deafness in the Bronx Waltzer Mouse
- Classical Genetics Meets Next-Generation Sequencing: Uncovering a Genome-Wide Recombination Map in
- Mutations in (Hhat) Perturb Hedgehog Signaling, Resulting in Severe Acrania-Holoprosencephaly-Agnathia Craniofacial Defects
- Regulation of ATG4B Stability by RNF5 Limits Basal Levels of Autophagy and Influences Susceptibility to Bacterial Infection