#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Discovery of a Modified Tetrapolar Sexual Cycle in and the Evolution of in the Species Complex


Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (∼2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.


Vyšlo v časopise: Discovery of a Modified Tetrapolar Sexual Cycle in and the Evolution of in the Species Complex. PLoS Genet 8(2): e32767. doi:10.1371/journal.pgen.1002528
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002528

Souhrn

Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (∼2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.


Zdroje

1. MichodREBernsteinHNedelcuAM 2008 Adaptive value of sex in microbial pathogens. Infection, Genetics and Evolution 8 267 285

2. SunSHeitmanJ 2011 Is sex necessary? BMC Biology 9 56

3. HeitmanJ 2006 Sexual reproduction and the evolution of microbial pathogens. Current Biology 16 R711 725

4. FraserJAHsuehY-PFindleyKHeitmanJ 2007 Evolution of the mating-type locus - the basidiomycetes. Heitman JWKJTaylorJWCasseltonLA Sex in Fungi: molecular determination and evolutionary implications Washington, DC ASM Press 19 34

5. LinXHullCMHeitmanJ 2005 Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434 1017 1021

6. KotheE 1996 Tetrapolar fungal mating types: sexes by the thousands. FEMS Microbiology Review 18 65 87

7. FraserJAHeitmanJ 2003 Fungal mating-type loci. Current Biology 13 R792 795

8. BakkerenGKamperJSchirawskiJ 2008 Sex in smut fungi: Structure, function and evolution of mating-type complexes. Fungal Genetics and Biology 45 Suppl 1 S15 21

9. JamesTYSrivilaiPKuesUVilgalysR 2006 Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 172 1877 1891

10. LengelerKBFoxDSFraserJAAllenAForresterK 2002 Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryotic Cell 1 704 718

11. Kwon-ChungKJ 1975 A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67 1197 1200

12. Kwon-ChungKJ 1976 A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 68 943 946

13. FraserJAHeitmanJ 2004 Evolution of fungal sex chromosomes. Molecular Microbiology 51 299 306

14. FraserJAHeitmanJ 2005 Chromosomal sex-determining regions in animals, plants and fungi. Current Opinion in Genetics and Development 15 645 651

15. HsuehYMetinBFindleyKRodriguez-CarresMHeitmanJ 2010 The mating-type locus of Cryptococcus: evolution of gene clusters governing sex-determination and sexual reproduction from phylogenomic perspective. HeitmanJKozelTKwon-ChungKPerfectJCasadevallA Cryptococcus: from human pathogen to model yeast Washington, DC ASM Press 139 149

16. FraserJADiezmannSSubaranRLAllenALengelerKB 2004 Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol 2 e384 doi:10.1371/journal.pone.0000384

17. LinXHeitmanJ 2007 Mechanisms of homothallism in fungi–transitions between heterothallism and homothallism. HeitmanJKronstadJWTaylorJWCasseltonLA Sex in Fungi: molecular determination and evolutionary implications Washington, DC ASM Press 35 58

18. WickesBLMayorgaMEEdmanUEdmanJC 1996 Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the α-mating type. Proc Natl Acad Sci USA 93 7327 7331

19. CasseltonLAOlesnickyNS 1998 Molecular genetics of mating recognition in basidiomycete fungi. Microbiology and Molecular Biology Reviews 62 55 70

20. HsuehYPFraserJAHeitmanJ 2008 Transitions in sexuality: recapitulation of an ancestral tri- and tetrapolar mating system in Cryptococcus neoformans. Eukaryotic Cell 7 1847 1855

21. HeitmanJ 2011 Cryptococcus from Human Pathogen to Model Yeast; HeitmanJKozelTRKwon-ChungJKPerfectJRCasadevallA Washington, D. C. ASM Press 1 606

22. FindleyKRodriguez-CarresMMetinBKroissJFonsecaA 2009 Phylogeny and phenotypic characterization of pathogenic Cryptococcus species and closely related saprobic taxa in the Tremellales. Eukaryotic Cell 8 353 361

23. Kwon-ChungKJBennettJERhodesJC 1982 Taxonomic studies on Filobasidiella species and their anamorphs. Antonie van Leeuwenhoek 48 25 38

24. MetinBFindleyKHeitmanJ 2010 The mating type locus (MAT) and sexual reproduction of Cryptococcus heveanensis: insights into the evolution of sex and sex-determining chromosomal regions in fungi. PLoS Genet 6 e10000961 doi:10.1371/journal.pgen.1000961

25. Statzell-TallmanABellochCFellJW 2008 Kwoniella mangroviensis gen. nov., sp.nov. (Tremellales, Basidiomycota), a teleomorphic yeast from mangrove habitats in the Florida Everglades and Bahamas. FEMS Yeast Research 8 103 113

26. BandoniRJ 1963 Conjugation in Tremella mesenterica. Canadian Journal of Botany 41 467 474

27. BandoniRJ 1965 Secondary control of conjugation in Tremella mesenterica. Canadian Journal of Botany 43 627 630

28. Rodriguez-CarresMFindleyKSunSDietrichFSHeitmanJ 2010 Morphological and genomic characterization of Filobasidiella depauperata: a homothallic sibling species of the pathogenic Cryptococcus species complex. PLoS ONE 5 e9620 doi:10.1371/journal.pone.0009620

29. SchlesingerRKahmannRKämperJ 1997 The homeodomains of the heterodimeric bE and bW proteins of Ustilago maydis are both critical for function. Molecular and General Genetics 254 514 519

30. KahmannRBolkerM 1996 Self/nonself recognition in fungi: old mysteries and simple solutions. Cell 85 145 148

31. BarnettJPayneRYarrowD 1990 Yeast: Characteristics and Identification Cambridge Cambridge University Press

32. VelagapudiRHsuehYPGeunes-BoyerSWrightJRHeitmanJ 2009 Spores as infectious propagules of Cryptococcus neoformans. Infection and Immunity 77 4345 4355

33. RajuNB 1992 Functional heterothallism resulting from homokaryotic conidia and ascospores in Neurospora tetrasperma. Mycological research 96 103 116

34. HullCMHeitmanJ 2002 Genetics of Cryptococcus neoformans. Annual Review of Genetics 36 557 615

35. XuJAliRYGregoryDAAmickDLambertSE 2000 Uniparental mitochondrial transmission in sexual crosses in Cryptococcus neoformans. Current Microbiology 40 269 273

36. YanZHullCMHeitmanJSunSXuJ 2004 SXI1α controls uniparental mitochondrial inheritance in Cryptococcus neoformans. Current Biology 14 R743 744

37. YanZHullCMSunSHeitmanJXuJP 2007 The mating-type specific homeodomain genes SXI1α and SXI2a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans. Current Genetics 51 187 195

38. YanZXuJ 2003 Mitochondria are inherited from the MATa parent in crosses of the basidiomycete fungus Cryptococcus neoformans. Genetics 163 1315 1325

39. OhnoS 1967 Sex chromosomes and sex-linked genes Berlin, Heidelberg, and New York Springer-Verlag

40. FerrisPOlsonBJSCDe HoffPLDouglassSCaseroD 2010 Evolution of an expanded sex-determining locus in Volvox. Science 328 351 354

41. SpitAHylandRHMellorEJCasseltonLA 1998 A role for heterodimerization in nuclear localization of a homeodomain protein. Proc Natl Acad Sci U S A 95 6228 6233

42. WangXHsuehY-PLiWFloydASkalskyR 2010 Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes & Development 24 2566 2582

43. LeeH-YChouJ-YCheongLChangN-HYangS-Y 2008 Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135 1065 1073

44. IdnurmA 2010 A tetrad analysis of the basidiomycete fungus Cryptococcus neoformans. Genetics 185 153 163

45. KüesUJamesTYHeitmanJ 2011 Mating type in basidiomycetes: unipolar, bipolar, and tetrapolar patterns of sexuality. The Mycota 14 97 162

46. CoelhoMARosaARodriguesNFonsecaAGoncalvesP 2008 Identification of mating type fenes in the bipolar basidiomycetous yeast Rhodosporidium toruloides: first insight into the MAT locus structure of the Sporidiobolales. Eukaryotic Cell 7 1053 1061

47. CoelhoMASampaioJPGoncalvesP 2010 A deviation from the bipolar-tetrapolar mating paradigm in an early diverged basidiomycete. PLoS Genet 6 e1001052 doi:10.1371/journal.pgen.1001052

48. RoseTMHenikoffJGHenikoffS 2003 CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Research 31 3763 3766

49. GordonDAbajianCGreenP 1998 Consed: A graphical tool for sequence finishing. Genome Research 8 195 202

50. GordonD 2002 Viewing and editing assembled sequences using Consed Current Protocols in Bioinformatics John Wiley & Sons, Inc

51. de la BastideMMcCombieWR 2002 Assembling genomic DNA sequences with PHRAP Current Protocols in Bioinformatics John Wiley & Sons, Inc

52. TanakaRTaguchiHTakeoKMiyajiMNishimuraK 1996 Determination of ploidy in Cryptococcus neoformans by flow cytometry. Journal of Medical and Veterinary Mycology 34 299 301

53. WickesBLMooreTDEKwon-ChungKJ 1994 Comparison of the electrophoretic karyotypes and chromosomal location of ten genes in the two varieties of Cryptococcus neoformans. Microbiology 140 543 550

54. RutherfordKParkhillJCrookJHorsnellTRiceP 2000 Artemis: sequence visualization and annotation. Bioinformatics 16 944 945

55. CarverTJRutherfordKMBerrimanMRajandreamMABarrellBG 2005 ACT: the Artemis Comparison Tool. Bioinformatics 21 3422 3423

56. TamuraKPetersonDPetersonNStecherGNeiM 2011 MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28 2731 2739

57. RzhetskyANeiM 1995 Tests of applicability of several substitution models for DNA sequence data. Molecular Biology and Evolution 12 131 151

58. GolubevW 1981 New combinations in the yeast genus Cryptococcus. Mycology and Phytopathology (Russian) 15 467 468

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#