#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Ultrafast Evolution and Loss of CRISPRs Following a Host Shift in a Novel Wildlife Pathogen,


Measureable rates of genome evolution are well documented in human pathogens but are less well understood in bacterial pathogens in the wild, particularly during and after host switches. Mycoplasma gallisepticum (MG) is a pathogenic bacterium that has evolved predominantly in poultry and recently jumped to wild house finches (Carpodacus mexicanus), a common North American songbird. For the first time we characterize the genome and measure rates of genome evolution in House Finch isolates of MG, as well as in poultry outgroups. Using whole-genome sequences of 12 House Finch isolates across a 13-year serial sample and an additional four newly sequenced poultry strains, we estimate a nucleotide diversity in House Finch isolates of only ∼2% of ancestral poultry strains and a nucleotide substitution rate of 0.8−1.2×10−5 per site per year both in poultry and in House Finches, an exceptionally fast rate rivaling some of the highest estimates reported thus far for bacteria. We also found high diversity and complete turnover of CRISPR arrays in poultry MG strains prior to the switch to the House Finch host, but after the invasion of House Finches there is progressive loss of CRISPR repeat diversity, and recruitment of novel CRISPR repeats ceases. Recent (2007) House Finch MG strains retain only ∼50% of the CRISPR repertoire founding (1994–95) strains and have lost the CRISPR–associated genes required for CRISPR function. Our results suggest that genome evolution in bacterial pathogens of wild birds can be extremely rapid and in this case is accompanied by apparent functional loss of CRISPRs.


Vyšlo v časopise: Ultrafast Evolution and Loss of CRISPRs Following a Host Shift in a Novel Wildlife Pathogen,. PLoS Genet 8(2): e32767. doi:10.1371/journal.pgen.1002511
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002511

Souhrn

Measureable rates of genome evolution are well documented in human pathogens but are less well understood in bacterial pathogens in the wild, particularly during and after host switches. Mycoplasma gallisepticum (MG) is a pathogenic bacterium that has evolved predominantly in poultry and recently jumped to wild house finches (Carpodacus mexicanus), a common North American songbird. For the first time we characterize the genome and measure rates of genome evolution in House Finch isolates of MG, as well as in poultry outgroups. Using whole-genome sequences of 12 House Finch isolates across a 13-year serial sample and an additional four newly sequenced poultry strains, we estimate a nucleotide diversity in House Finch isolates of only ∼2% of ancestral poultry strains and a nucleotide substitution rate of 0.8−1.2×10−5 per site per year both in poultry and in House Finches, an exceptionally fast rate rivaling some of the highest estimates reported thus far for bacteria. We also found high diversity and complete turnover of CRISPR arrays in poultry MG strains prior to the switch to the House Finch host, but after the invasion of House Finches there is progressive loss of CRISPR repeat diversity, and recruitment of novel CRISPR repeats ceases. Recent (2007) House Finch MG strains retain only ∼50% of the CRISPR repertoire founding (1994–95) strains and have lost the CRISPR–associated genes required for CRISPR function. Our results suggest that genome evolution in bacterial pathogens of wild birds can be extremely rapid and in this case is accompanied by apparent functional loss of CRISPRs.


Zdroje

1. FischerJStallknechtDLuttrellPDhondtAConverseK 1997 Mycoplasmal conjunctivitis in wild songbirds: the spread of a new contagious disease in a mobile host population. Emerg Infect Diseases 3 69

2. NolanPHillGStoehrA 1998 Sex, size, and plumage redness predict house finch survival in an epidemic. Proceedings of the Royal Society B-Biological Sciences 265 961

3. DhondtAADhondtKVHawleyDMJennelleCS 2007 Experimental evidence for transmission of Mycoplasma gallisepticum in house finches by fomites. Avian Pathol 36 205 208

4. DhondtAATessgliaDLSlothowerRL 1998 Epidemic mycoplasmal conjunctivitis in House Finches from eastern North America. J Wildlife Dis 34 265 280

5. FaustinoCJennelleCConnollyVDavisASwarthoutE 2004 Mycoplasma gallisepticum infection dynamics in a house finch population: seasonal variation in survival, encounter and transmission rate. Ecology 73 651 669

6. HochachkaWMDhondtAA 2000 Density-dependent decline of host abundance resulting from a new infectious disease. Proc Natl Acad Sci (USA) 97 5303 5306

7. LuttrellMFischerJStallknechtDKlevenS 1996 Field investigation of Mycoplasma gallisepticum infections in house finches (Carpodacus mexicanus) from Maryland and Georgia. Avian Dis 335 341

8. RambautAPybusONelsonMViboudCTaubenbergerJ 2008 The genomic and epidemiological dynamics of human influenza A virus. Nature 453 615 619

9. BiekRHendersonJCWallerLARupprechtCERealLA 2007 A high-resolution genetic signature of demographic and spatial expansion in epizootic rabies virus. Proc Natl Acad Sci (USA) 104 7993 7998

10. BarrickJYuDYoonSJeongHOhT 2009 Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461 1243 1247

11. HarrisSRFeilEJHoldenMTQuailMANickersonEK 2010 Evolution of MRSA during hospital transmission and intercontinental spread. Science 327 469 474

12. NubelUDordelJKurtKStrommengerBWesthH 2010 A Timescale for Evolution, Population Expansion, and Spatial Spread of an Emerging Clone of Methicillin-Resistant Staphylococcus aureus. PLoS Path 6 e1000855 doi:10.1371/journal.ppat.1000855

13. CroucherNJHarrisSRFraserCQuailMABurtonJ 2011 Rapid Pneumococcal Evolution in Response to Clinical Interventions. Science 331 430 434

14. MorelliGDidelotXKusecekBSchwarzSBahlawaneC 2010 Microevolution of Helicobacter pylori during Prolonged Infection of Single Hosts and within Families. PLoS Genet 6 e1001036 doi:10.1371/journal.pgen.1001036

15. HeMSebaihiaMLawleyTDStablerRADawsonLF 2010 Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci (USA) 107 7527 7532

16. HoltKEParkhillJMazzoniCJRoumagnacPWeillFX 2008 High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 40 987 993

17. RoumagnacPWeillFXDolecekCBakerSBrisseS 2006 Evolutionary history of Salmonella Typhi. Science 314 1301 1304

18. MorelliGSongYJMazzoniCJEppingerMRoumagnacP 2010 Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet 42 1140 1143

19. MoranNMcLaughlinHSorekR 2009 The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323 379

20. OchmanHElwynSMoranN 1999 Calibrating bacterial evolution. Proc Natl Acad Sci (USA) 96 12638 12643

21. ParkhillJSebaihiaMPrestonAMurphyLThomsonN 2003 Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35 32 40

22. EppingerMBaarCLinzBRaddatzGLanzC 2006 Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet 2 e120 doi:10.1371/journal.pgen.0020120

23. PapazisiLGortonTSKutishGMarkhamPFBrowningGF 2003 The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain Rlow. Microbiol 149 2307 2316

24. FarmerKLHillGERobertsSR 2002 Susceptibility of a naive population of house finches to Mycoplasma gallisepticum. J Wildlife Dis 38 282 286

25. NolanPMRobertsSRHillGE 2004 Effects of Mycoplasma gallisepticum on reproductive success in house finches. Avian Dis 48 879 885

26. WangZBakerAJHillGEEdwardsSV 2003 Reconciling actual and inferred population histories in the house finch (Carpodacus mexicanus) by AFLP analysis. Evolution 57 2852 2864

27. WangZFarmerKHillGEEdwardsSV 2006 A cDNA macroarray approach to parasite-induced gene expression changes in a songbird host: genetic response of house finches to experimental infection by Mycoplasma gallisepticum. Mol Ecol 15 1263 1273

28. FergusonNHeppDSunSIkutaNLevisohnS 2005 Use of molecular diversity of Mycoplasma gallisepticum by gene-targeted sequencing (GTS) and random amplified polymorphic DNA (RAPD) analysis for epidemiological studies. Microbiol 151 1883 1893

29. DalloulRALongJAZiminAVAslamLBealK 2010 Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis. PLoS Biol 8 e1000475 doi:10.1371/journal.pbio.1000475

30. DimcheffDEDrovetskiSVMindellDP 2002 Phylogeny of Tetraoninae and other galliform birds using mitochondrial 12S and ND2 genes. Mol Phyl Evol 24 203 215

31. BarkerFKCiboisASchiklerPFeinsteinJCracraftJ 2004 Phylogeny and diversification of the largest avian radiation. Proc Natl Acad Sci (USA) 101 11040 11045

32. DrummondARambautA 2007 BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7 214

33. DrummondAJRambautAShapiroBPybusOG 2005 Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution 22 1185 1192

34. BruenTPhilippeHBryantD 2006 A simple and robust statistical test for detecting the presence of recombination. Genetics 172 2665

35. Maynard SmithJSmithN 1998 Detecting recombination from gene trees. Mol Biol Evol 15 590

36. PosadaDCrandallK 2001 Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proceedings of the National Academy of Sciences of the United States of America 98 13757

37. WoeseCStackebrandtELudwigW 1985 What are mycoplasmas: the relationship of tempo and mode in bacterial evolution. J Mol Evol 21 305 316

38. CarvalhoFFonsecaMBatistuzzo De MedeirosSScortecciKBlahaC 2005 DNA repair in reduced genome: the mycoplasma model. Gene 360 111 119

39. SniegowskiPDGerrishPJLenskiRE 1997 Evolution of high mutation rates in experimental populations of E. coli. Nature (London) 387 703 705

40. MoolenaarGFrankenKDijkstraDThomas-OatesJVisseR 1995 The C-terminal region of the UvrB protein of Escherichia coli contains an important determinant for UvrC binding to the preincision complex but not the catalytic site for 3-incision. Journal of Biological Chemistry 270 30508

41. LevinBR 2010 Nasty Viruses, Costly Plasmids, Population Dynamics, and the Conditions for Establishing and Maintaining CRISPR-Mediated Adaptive Immunity in Bacteria. PLoS Genet 6 e1001171 doi:10.1371/journal.pgen.1001171

42. NozawaTFurukawaNAikawaCWatanabeTHaobamB 2011 CRISPR Inhibition of Prophage Acquisition in Streptococcus pyogenes. PLoS ONE 6 e19543 doi:10.1371/journal.pone.0019543

43. SorekRKuninVHugenholtzP 2008 CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6 181 186

44. ValePFLittleTJ 2010 CRISPR-mediated phage resistance and the ghost of coevolution past. Proceedings of the Royal Society B-Biological Sciences 277 2097 2103

45. SorekRKuninVHugenholtzP 2008 CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Reviews Genetics 6 181 186

46. BarrangouRFremauxCDeveauHRichardsMBoyavalP 2007 CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 1709 1712

47. DeveauHBarrangouRGarneauJELabonteJFremauxC 2008 Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190 1390 1400

48. TysonGBanfieldJ 2008 Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Envir Microbiol 10 200 207

49. HoSYPhillipsMJCooperADrummondAJ 2005 Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22 1561 1568

50. EmersonBC 2007 Alarm bells for the molecular clock? No support for Ho et al.'s model of time-dependent molecular rate estimates. Syst Biol 56 337 345

51. CuiYLiYGorgéOPlatonovMEYanY 2008 Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS ONE 3 e2652 doi:10.1371/journal.pone.0002652

52. TouchonMRochaEPC 2010 The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS ONE 5 e11126 doi:10.1371/journal.pone.0008694

53. TouchonMCharpentierSClermontORochaEPCDenamurE 2011 CRISPR Distribution within the Escherichia coli Species Is Not Suggestive of Immunity-Associated Diversifying Selection. J Bacteriol 193 2460 2467

54. Diez-VillasenorCAlmendrosCGarcia-MartinezJMojicaFJ 2010 Diversity of CRISPR loci in Escherichia coli. Microbiol 156 1351 1361

55. CadyKCWhiteASHammondJHAbendrothMDKarthikeyanRS 2011 Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates. Microbiol 157 430 437

56. HorvathPBarrangouR 2010 CRISPR/Cas, the immune system of bacteria and archaea. Science 327 167

57. TorchinMLaffertyKDobsonAMcKenzieVKurisA 2003 Introduced species and their missing parasites. Nature 421 628 630

58. WaldorMK 2005 Phages: their role in bacterial pathogenesis and biotechnology; Waldor MK, Friedman DI, Adhya SL, editors. Washington D.C.: American Society of Microbiology Press

59. LeeSWBrowningGMarkhamP 2008 Development of a replicable oriC plasmid for Mycoplasma gallisepticum and Mycoplasma imitans, and gene disruption through homologous recombination in M. gallisepticum. Microbiol 154 2571

60. ColeSTEiglmeierKParkhillJJamesKDThomsonNR 2001 Massive gene decay in the leprosy bacillus. Nature 409 1007 1011

61. ParkhillJWrenBWThomsonNRTitballRWHoldenMTG 2001 Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413 523 527

62. CiccarelliFDoerksTVon MeringCCreeveyCSnelB 2006 Toward automatic reconstruction of a highly resolved tree of life. Science 311 1283

63. HobothCHoffmannREichnerAHenkeCSchmoldtS 2009 Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Disease 200 118

64. RozasJSánchez-DelBarrioJCMesseguerXRozasR 2003 DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19 2496 2497

65. SiguierPPerochonJLestradeLMahillonJChandlerM 2006 ISfinder: the reference centre for bacterial insertion sequences. Nucl Acids Res 34 D32 D36

66. HusonDHBryantD 2006 Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23 254 267

67. HillierLDWMarthGTQuinlanARDoolingDFewellG 2008 Whole-genome sequencing and variant discovery in C. elegans. Nature Methods 5 183 188

68. BrockmanWAlvarezPYoungSGarberMGiannoukosG 2008 Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Research 18 763

69. MartinD 2009 Recombination detection and analysis using RDP3. Methods Mol Biol 537 185 205

70. JolleyKFeilEChanMSMaidenMCJ 2001 Sequence type analysis and recombinational tests (START). Bioinformatics 17 1230

71. GuindonSDelsucFDufayardJFGascuelO 2009 Estimating maximum likelihood phylogenies with PhyML

72. DuffySHolmesEC 2009 Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. Journal of General Virology 90 1539

73. LeyDBerkhoffJLevisohnS 1997 Molecular epidemiologic investigations of Mycoplasma gallisepticum conjunctivitis in songbirds by random amplified polymorphic DNA analyses. Emerging Infectious Diseases 3 n3

74. LeyDBerkhoffJMcLarenJ 1996 Mycoplasma gallisepticum isolated from house finches (Carpodacus mexicanus) with conjunctivitis. Avian Dis 480 483

75. TullyJGRazinS 1983 Diagnostic mycoplasmology. New York Academic Press. xxiii, 440 p. p

76. FarmerKHillGRobertsS 2005 Susceptibility of wild songbirds to the house finch strain of Mycoplasma gallisepticum. J Wildlife Dis 41 317

77. HershbergRPetrovDA 2010 Evidence that mutation is universally biased towards AT in bacteria. PLoS Genet 6 e1001115 doi:10.1371/journal.pgen.1001115

78. YangZ 2007 PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution 24 1586 1591

79. BarreAde DaruvarABlanchardA 2004 MolliGen, a database dedicated to the comparative genomics of Mollicutes. Nucleic Acids Research 32 D307 310

80. MoolenaarGFrankenKvan de PuttePGoosenN 1997 Function of the homologous regions of the Escherichia coli DNA excision repair proteins UvrB and UvrC in stabilization of the UvrBC–DNA complex and in 3 -incision. Mutation Research-DNA Repair 385 195 203

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#