#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Loss of Tgif Function Causes Holoprosencephaly by Disrupting the Shh Signaling Pathway


Holoprosencephaly (HPE) is a severe human genetic disease affecting craniofacial development, with an incidence of up to 1/250 human conceptions and 1.3 per 10,000 live births. Mutations in the Sonic Hedgehog (SHH) gene result in HPE in humans and mice, and the Shh pathway is targeted by other mutations that cause HPE. However, at least 12 loci are associated with HPE in humans, suggesting that defects in other pathways contribute to this disease. Although the TGIF1 (TG-interacting factor) gene maps to the HPE4 locus, and heterozygous loss of function TGIF1 mutations are associated with HPE, mouse models have not yet explained how loss of Tgif1 causes HPE. Using a conditional Tgif1 allele, we show that mouse embryos lacking both Tgif1 and the related Tgif2 have HPE-like phenotypes reminiscent of Shh null embryos. Eye and nasal field separation is defective, and forebrain patterning is disrupted in embryos lacking both Tgifs. Early anterior patterning is relatively normal, but expression of Shh is reduced in the forebrain, and Gli3 expression is up-regulated throughout the neural tube. Gli3 acts primarily as an antagonist of Shh function, and the introduction of a heterozygous Gli3 mutation into embryos lacking both Tgif genes partially rescues Shh signaling, nasal field separation, and HPE. Tgif1 and Tgif2 are transcriptional repressors that limit Transforming Growth Factor β/Nodal signaling, and we show that reducing Nodal signaling in embryos lacking both Tgifs reduces the severity of HPE and partially restores the output of Shh signaling. Together, these results support a model in which Tgif function limits Nodal signaling to maintain the appropriate output of the Shh pathway in the forebrain. These data show for the first time that Tgif1 mutation in mouse contributes to HPE pathogenesis and provide evidence that this is due to disruption of the Shh pathway.


Vyšlo v časopise: Loss of Tgif Function Causes Holoprosencephaly by Disrupting the Shh Signaling Pathway. PLoS Genet 8(2): e32767. doi:10.1371/journal.pgen.1002524
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002524

Souhrn

Holoprosencephaly (HPE) is a severe human genetic disease affecting craniofacial development, with an incidence of up to 1/250 human conceptions and 1.3 per 10,000 live births. Mutations in the Sonic Hedgehog (SHH) gene result in HPE in humans and mice, and the Shh pathway is targeted by other mutations that cause HPE. However, at least 12 loci are associated with HPE in humans, suggesting that defects in other pathways contribute to this disease. Although the TGIF1 (TG-interacting factor) gene maps to the HPE4 locus, and heterozygous loss of function TGIF1 mutations are associated with HPE, mouse models have not yet explained how loss of Tgif1 causes HPE. Using a conditional Tgif1 allele, we show that mouse embryos lacking both Tgif1 and the related Tgif2 have HPE-like phenotypes reminiscent of Shh null embryos. Eye and nasal field separation is defective, and forebrain patterning is disrupted in embryos lacking both Tgifs. Early anterior patterning is relatively normal, but expression of Shh is reduced in the forebrain, and Gli3 expression is up-regulated throughout the neural tube. Gli3 acts primarily as an antagonist of Shh function, and the introduction of a heterozygous Gli3 mutation into embryos lacking both Tgif genes partially rescues Shh signaling, nasal field separation, and HPE. Tgif1 and Tgif2 are transcriptional repressors that limit Transforming Growth Factor β/Nodal signaling, and we show that reducing Nodal signaling in embryos lacking both Tgifs reduces the severity of HPE and partially restores the output of Shh signaling. Together, these results support a model in which Tgif function limits Nodal signaling to maintain the appropriate output of the Shh pathway in the forebrain. These data show for the first time that Tgif1 mutation in mouse contributes to HPE pathogenesis and provide evidence that this is due to disruption of the Shh pathway.


Zdroje

1. GengXOliverG 2009 Pathogenesis of holoprosencephaly. J Clin Invest 119 1403 1413

2. MuenkeMBeachyPA 2001 Holoprosencephaly. C.R.SA.L.BW.S.SD.VB.C The metabolic and molecular bases of inherited disease: McGraw-Hill 6203 6230

3. LeonciniEBaranelloGOrioliIMAnnerenGBakkerM 2008 Frequency of holoprosencephaly in the International Clearinghouse Birth Defects Surveillance Systems: searching for population variations. Birth Defects Res A Clin Mol Teratol 82 585 591

4. MatsunagaEShiotaK 1977 Holoprosencephaly in human embryos: epidemiologic studies of 150 cases. Teratology 16 261 272

5. RoachEDemyerWConneallyPMPalmerCMerrittAD 1975 Holoprosencephaly: birth data, genetic and demographic analyses of 30 families. Birth Defects Orig Artic Ser 11 294 313

6. RubensteinJLBeachyPA 1998 Patterning of the embryonic forebrain. Curr Opin Neurobiol 8 18 26

7. GoldenJA 1998 Holoprosencephaly: a defect in brain patterning. J Neuropathol Exp Neurol 57 991 999

8. OlsenCLHughesJPYoungbloodLGSharpe-StimacM 1997 Epidemiology of holoprosencephaly and phenotypic characteristics of affected children: New York State, 1984–1989. Am J Med Genet 73 217 226

9. CroenLAShawGMLammerEJ 1996 Holoprosencephaly: epidemiologic and clinical characteristics of a California population. Am J Med Genet 64 465 472

10. RoesslerEMuenkeM 1998 Holoprosencephaly: a paradigm for the complex genetics of brain development. J Inherit Metab Dis 21 481 497

11. WallisDEMuenkeM 1999 Molecular Mechanisms of Holoprosencephaly. Mol Genet Metab 68 126 138

12. MuenkeMBeachyPA 2000 Genetics of ventral forebrain development and holoprosencephaly. Curr Opin Genet Dev 10 262 269

13. RoesslerEBelloniEGaudenzKJayPBertaP 1996 Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 14 357 360

14. RoesslerEBelloniEGaudenzKVargasFSchererSW 1997 Mutations in the C-terminal domain of Sonic Hedgehog cause holoprosencephaly. Hum Mol Genet 6 1847 1853

15. NanniLMingJEBocianMSteinhausKBianchiDW 1999 The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 8 2479 2488

16. RoesslerEWardDEGaudenzKBelloniESchererSW 1997 Cytogenetic rearrangements involving the loss of the Sonic Hedgehog gene at 7q36 cause holoprosencephaly. Hum Genet 100 172 181

17. GurrieriFTraskBJvan den EnghGKraussCMSchinzelA 1993 Physical mapping of the holoprosencephaly critical region on chromosome 7q36. Nat Genet 3 247 251

18. WallisDERoesslerEHehrUNanniLWiltshireT 1999 Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet 22 196 198

19. BrownSAWarburtonDBrownLYYuCYRoederER 1998 Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet 20 180 183

20. GrippKWWottonDEdwardsMCRoesslerEAdesL 2000 Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet 25 205 208

21. GengXSpeirsCLagutinOInbalALiuW 2008 Haploinsufficiency of Six3 fails to activate Sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev Cell 15 236 247

22. JeongYLeskowFCEl-JaickKRoesslerEMuenkeM 2008 Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein. Nat Genet 40 1348 1353

23. ShimamuraKRubensteinJL 1997 Inductive interactions direct early regionalization of the mouse forebrain. Development 124 2709 2718

24. AotoKNishimuraTEtoKMotoyamaJ 2002 Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face, and limb bud. Dev Biol 251 320 332

25. FuccilloMJoynerALFishellG 2006 Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci 7 772 783

26. ToleSRagsdaleCWGroveEA 2000 Dorsoventral patterning of the telencephalon is disrupted in the mouse mutant extra-toes(J). Dev Biol 217 254 265

27. RalluMMacholdRGaianoNCorbinJGMcMahonAP 2002 Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 and Hedgehog signaling. Development 129 4963 4974

28. HebertJMFishellG 2008 The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci 9 678 685

29. GutinGFernandesMPalazzoloLPaekHYuK 2006 FGF signalling generates ventral telencephalic cells independently of SHH. Development 133 2937 2946

30. BertolinoEReimundBWildt-PerinicDClercR 1995 A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem 270 31178 31188

31. WottonDLoRSLeeSMassagueJ 1999 A Smad transcriptional corepressor. Cell 97 29 39

32. HeldinC-HMiyazonoKten DijkeP 1997 TGF-ß signalling from cell membrane to nucleus through SMAD proteins. Nature 390 465 471

33. MassagueJSeoaneJWottonD 2005 Smad transcription factors. Genes Dev 19 2783 2810

34. WottonDMassagueJ 2001 Smad transcriptional corepressors in TGF beta family signaling. Curr Top Microbiol Immunol 254 145 164

35. ImotoIPimkhaokhamAWatanabeTSaito-OharaFSoedaE 2000 Amplification and overexpression of TGIF2, a novel homeobox gene of the TALE superclass, in ovarian cancer cell lines. Biochem Biophys Res Commun 276 264 270

36. MelhuishTAGalloCMWottonD 2001 TGIF2 interacts with histone deacetylase 1 and represses transcription. J Biol Chem 276 32109 32114

37. MelhuishTAWottonD 2006 The Tgif2 gene contains a retained intron within the coding sequence. BMC Mol Biol 7 2

38. BartholinLPowersSEMelhuishTALasseSWeinsteinM 2006 TGIF inhibits retinoid signaling. Mol Cell Biol 26 990 1001

39. MelhuishTAChungDDBjerkeGAWottonD 2010 Tgif1 represses apolipoprotein gene expression in liver. J Cell Biochem 111 380 390

40. AguilellaCDubourgCAttia-SobolJVigneronJBlayauM 2003 Molecular screening of the TGIF gene in holoprosencephaly: identification of two novel mutations. Hum Genet 112 131 134

41. ChenCPChernSRDuSHWangW 2002 Molecular diagnosis of a novel heterozygous 268C→T (R90C) mutation in TGIF gene in a fetus with holoprosencephaly and premaxillary agenesis. Prenat Diagn 22 5 7

42. El-JaickKBPowersSEBartholinLMyersKRHahnJ 2007 Functional analysis of mutations in TGIF associated with holoprosencephaly. Mol Genet Metab 90 97 111

43. JinJZGuSMcKinneyPDingJ 2006 Expression and functional analysis of Tgif during mouse midline development. Dev Dyn 235 547 553

44. MarLHoodlessPA 2006 Embryonic fibroblasts from mice lacking Tgif were defective in cell cycling. Mol Cell Biol 26 4302 4310

45. ShenJWalshCA 2005 Targeted disruption of Tgif, the mouse ortholog of a human holoprosencephaly gene, does not result in holoprosencephaly in mice. Mol Cell Biol 25 3639 3647

46. BartholinLMelhuishTAPowersSEGoddard-LeonSTreilleuxI 2008 Maternal Tgif is required for vascularization of the embryonic placenta. Dev Biol 319 285 297

47. KuangCXiaoYYangLChenQWangZ 2006 Intragenic deletion of Tgif causes defectsin brain development. Hum Mol Genet 15 3508 3519

48. PowersSETaniguchiKYenWMelhuishTAShenJ 2010 Tgif1 and Tgif2 regulate Nodal signaling and are required for gastrulation. Development 137 249 259

49. HayashiSLewisPPevnyLMcMahonAP 2002 Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev 119 Suppl 1 S97 S101

50. ChiangCLitingtungYLeeEYoungKECordenJL 1996 Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383 407 413

51. MaYErknerAGongRYaoSTaipaleJ 2002 Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111 63 75

52. MartynogaBMorrisonHPriceDJMasonJO 2005 Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev Biol 283 113 127

53. SilvestriCNarimatsuMvon BothILiuYTanNB 2008 Genome-wide identification of Smad/Foxh1 targets reveals a role for Foxh1 in retinoic acid regulation and forebrain development. Dev Cell 14 411 423

54. ThomasPBeddingtonR 1996 Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6 1487 1496

55. Fukuchi-ShimogoriTGroveEA 2003 Emx2 patterns the neocortex by regulating FGF positional signaling. Nat Neurosci 6 825 831

56. LewisSLTamPP 2006 Definitive endoderm of the mouse embryo: formation, cell fates, and morphogenetic function. Dev Dyn 235 2315 2329

57. Martinez BarberaJPClementsMThomasPRodriguezTMeloyD 2000 The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127 2433 2445

58. SasakiHHoganBL 1993 Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118 47 59

59. LewisSLKhooPLAndrea De YoungRBildsoeHWakamiyaM 2007 Genetic interaction of Gsc and Dkk1 in head morphogenesis of the mouse. Mech Dev 124 157 165

60. InghamPWMcMahonAP 2001 Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15 3059 3087

61. AotoKShikataYImaiHMatsumaruDTokunagaT 2009 Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis. Dev Biol 327 106 120

62. BlaessSStephenDJoynerAL 2008 Gli3 coordinates three-dimensional patterning and growth of the tectum and cerebellum by integrating Shh and Fgf8 signaling. Development 135 2093 2103

63. NomuraMLiE 1998 Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 393 786 790

64. OhkuboYChiangCRubensteinJL 2002 Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111 1 17

65. StormEEGarelSBorelloUHebertJMMartinezS 2006 Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133 1831 1844

66. SolomonBDMercierSVelezJIPineda-AlvarezDEWyllieA 2010 Analysis of genotype-phenotype correlations in human holoprosencephaly. Am J Med Genet C Semin Med Genet 154C 133 141

67. SanekNATaylorAANyholmMKGrinblatY 2009 Zebrafish zic2a patterns the forebrain through modulation of Hedgehog-activated gene expression. Development 136 3791 3800

68. WarrNPowles-GloverNChappellARobsonJNorrisD 2008 Zic2-associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation. Hum Mol Genet 17 2986 2996

69. HymanCABartholinLNewfeldSJWottonD 2003 Drosophila TGIF proteins are transcriptional activators. Mol Cell Biol 23 9262 9274

70. LammerEJChenDTHoarRMAgnishNDBenkePJ 1985 Retinoic acid embryopathy. N Engl J Med 313 837 841

71. SulikKKDehartDBRogersJMChernoffN 1995 Teratogenicity of low doses of all-trans retinoic acid in presomite mouse embryos. Teratology 51 398 403

72. De La CruzJMBamfordRNBurdineRDRoesslerEBarkovichAJ 2002 A loss-of-function mutation in the CFC domain of TDGF1 is associated with human forebrain defects. Hum Genet 110 422 428

73. RoesslerEOuspenskaiaMVKarkeraJDVelezJIKantipongA 2008 Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet 83 18 29

74. DingJYangLYanYTChenADesaiN 1998 Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 395 702 707

75. HoodlessPAPyeMChazaudCLabbeEAttisanoL 2001 FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes Dev 15 1257 1271

76. CollignonJVarletIRobertsonEJ 1996 Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381 155 158

77. JuWOgawaAHeyerJNierhofDYuL 2006 Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol Cell Biol 26 654 667

78. LewisPMDunnMPMcMahonJALoganMMartinJF 2001 Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105 599 612

79. TruettGEHeegerPMynattRLTruettAAWalkerJA 2000 Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29 52 54

80. WilkinsonDG 1992 In situ hybridization: a practical approach. 75 83

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#