#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evaluation of the Role of Functional Constraints on the Integrity of an Ultraconserved Region in the Genus


Why gene order is conserved over long evolutionary timespans remains elusive. A common interpretation is that gene order conservation might reflect the existence of functional constraints that are important for organismal performance. Alteration of the integrity of genomic regions, and therefore of those constraints, would result in detrimental effects. This notion seems especially plausible in those genomes that can easily accommodate gene reshuffling via chromosomal inversions since genomic regions free of constraints are likely to have been disrupted in one or more lineages. Nevertheless, no empirical test has been performed to this notion. Here, we disrupt one of the largest conserved genomic regions of the Drosophila genome by chromosome engineering and examine the phenotypic consequences derived from such disruption. The targeted region exhibits multiple patterns of functional enrichment suggestive of the presence of constraints. The carriers of the disrupted collinear block show no defects in their viability, fertility, and parameters of general homeostasis, although their odorant perception is altered. This change in odorant perception does not correlate with modifications of the level of expression and sex bias of the genes within the genomic region disrupted. Our results indicate that even in highly rearranged genomes, like those of Diptera, unusually high levels of gene order conservation cannot be systematically attributed to functional constraints, which raises the possibility that other mechanisms can be in place and therefore the underpinnings of the maintenance of gene organization might be more diverse than previously thought.


Vyšlo v časopise: Evaluation of the Role of Functional Constraints on the Integrity of an Ultraconserved Region in the Genus. PLoS Genet 8(2): e32767. doi:10.1371/journal.pgen.1002475
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002475

Souhrn

Why gene order is conserved over long evolutionary timespans remains elusive. A common interpretation is that gene order conservation might reflect the existence of functional constraints that are important for organismal performance. Alteration of the integrity of genomic regions, and therefore of those constraints, would result in detrimental effects. This notion seems especially plausible in those genomes that can easily accommodate gene reshuffling via chromosomal inversions since genomic regions free of constraints are likely to have been disrupted in one or more lineages. Nevertheless, no empirical test has been performed to this notion. Here, we disrupt one of the largest conserved genomic regions of the Drosophila genome by chromosome engineering and examine the phenotypic consequences derived from such disruption. The targeted region exhibits multiple patterns of functional enrichment suggestive of the presence of constraints. The carriers of the disrupted collinear block show no defects in their viability, fertility, and parameters of general homeostasis, although their odorant perception is altered. This change in odorant perception does not correlate with modifications of the level of expression and sex bias of the genes within the genomic region disrupted. Our results indicate that even in highly rearranged genomes, like those of Diptera, unusually high levels of gene order conservation cannot be systematically attributed to functional constraints, which raises the possibility that other mechanisms can be in place and therefore the underpinnings of the maintenance of gene organization might be more diverse than previously thought.


Zdroje

1. KapranovPChengJDikeSNixDADuttaguptaR 2007 RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316 1484 1488

2. GraveleyBRBrooksANCarlsonJWDuffMOLandolinJM 2010 The developmental transcriptome of Drosophila melanogaster. Nature

3. RoySErnstJKharchenkoPVKheradpourPNegreN 2010 Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330 1787 1797

4. SharpeJNonchevSGouldAWhitingJKrumlaufR 1998 Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. Embo J 17 1788 1798

5. SpitzFGonzalezFDubouleD 2003 A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113 405 417

6. BulgerMGroudineM 1999 Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13 2465 2477

7. CavodeassiFModolellJGomez-SkarmetaJL 2001 The Iroquois family of genes: from body building to neural patterning. Development 128 2847 2855

8. MackenzieAMillerKACollinsonJM 2004 Is there a functional link between gene interdigitation and multi-species conservation of synteny blocks? Bioessays 26 1217 1224

9. SpitzFDubouleD 2008 Global control regions and regulatory landscapes in vertebrate development and evolution. Adv Genet 61 175 205

10. MonginEDewarKBlanchetteM 2009 Long-range regulation is a major driving force in maintaining genome integrity. BMC Evol Biol 9 203

11. KikutaHLaplanteMNavratilovaPKomisarczukAZEngstromPG 2007 Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res 17 545 555

12. EngstromPGHo SuiSJDrivenesOBeckerTSLenhardB 2007 Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res 17 1898 1908

13. HuftonALMathiaSBraunHGeorgiULehrachH 2009 Deeply conserved chordate noncoding sequences preserve genome synteny but do not drive gene duplicate retention. Genome Res 19 2036 2051

14. de la Calle-MustienesEFeijooCGManzanaresMTenaJJRodriguez-SeguelE 2005 A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res 15 1061 1072

15. PennacchioLAAhituvNMosesAMPrabhakarSNobregaMA 2006 In vivo enhancer analysis of human conserved non-coding sequences. Nature 444 499 502

16. EllingsenSLaplanteMAKonigMKikutaHFurmanekT 2005 Large-scale enhancer detection in the zebrafish genome. Development 132 3799 3811

17. WoolfeAGoodsonMGoodeDKSnellPMcEwenGK 2005 Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3 e7 doi:10.1371/journal.pbio.0030007

18. ZunigaAMichosOSpitzFHaramisAPPanmanL 2004 Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev 18 1553 1564

19. KleinjanDAvan HeyningenV 2005 Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76 8 32

20. SpitzFHerkenneCMorrisMADubouleD 2005 Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nat Genet 37 889 893

21. NavratilovaPBeckerTS 2009 Genomic regulatory blocks in vertebrates and implications in human disease. Brief Funct Genomic Proteomic 8 333 342

22. von GrotthussMAshburnerMRanzJM 2010 Fragile regions and not functional constraints predominate in shaping gene organization in the genus Drosophila. Genome Res 20 1084 1096

23. TamuraKSubramanianSKumarS 2004 Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 21 36 44

24. PowellJRDeSalleR 1995 Drosophila molecular phylogenies and their uses. HechtMKMacIntireRJCleggMT Evolutionary Biology New York Plenum 87 138

25. MullerHJ 1940 Bearings of the Drosophila work on systematics. HuxleyJ The New Systematics Oxford Clarendon Press 185 268

26. SturtevantAHNovitskiE 1941 The homologies of the chromosome elements in the genus Drosophila. Genetics 26 517 541

27. PevznerPTeslerG 2003 Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci U S A 100 7672 7677

28. MeadowsLAChanYSRooteJRussellS 2010 Neighbourhood continuity is not required for correct testis gene expression in Drosophila. PLoS Biol 8 e1000552 doi:10.1371/journal.pbio.1000552

29. BhutkarASchaefferSWRussoSMXuMSmithTF 2008 Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics 179 1657 1680

30. TweedieSAshburnerMFallsKLeylandPMcQuiltonP 2009 FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res 37 D555 559

31. SwarupSWilliamsTIAnholtRR 2011 Functional Dissection of Odorant Binding Protein Genes in Drosophila melanogaster. Genes Brain Behav

32. RanzJMCasalsFRuizA 2001 How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila. Genome Res 11 230 239

33. ZdobnovEMVon MeringCLetunicITorrentsDSuyamaM 2002 Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298 149 159

34. ZdobnovEMBorkP 2007 Quantification of insect genome divergence. Trends Genet 23 16 20

35. HoltRASubramanianGMHalpernASuttonGGCharlabR 2002 The genome sequence of the malaria mosquito Anopheles gambiae. Science 298 129 149

36. PapatsenkoDLevineMGoltsevY 2011 Clusters of temporal discordances reveal distinct embryonic patterning mechanisms in Drosophila and anopheles. PLoS Biol 9 e1000584 doi:10.1371/journal.pbio.1000584

37. VieiraFGRozasJ 2011 Comparative Genomics of the Odorant-Binding and Chemosensory Protein Gene Families across the Arthropoda: Origin and evolutionary history of the chemosensory system. Genome Biol Evol

38. ZhouJJHeXLPickettJAFieldLM 2008 Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Mol Biol 17 147 163

39. ParksALCookKRBelvinMDompeNAFawcettR 2004 Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36 288 292

40. GolicKGGolicMM 1996 Engineering the Drosophila genome: chromosome rearrangements by design. Genetics 144 1693 1711

41. RyderEBlowsFAshburnerMBautista-LlacerRCoulsonD 2004 The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167 797 813

42. RyderEAshburnerMBautista-LlacerRDrummondJWebsterJ 2007 The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177 615 629

43. AdamsMDCelnikerSEHoltRAEvansCAGocayneJD 2000 The genome sequence of Drosophila melanogaster. Science 287 2185 2195

44. O'KeefeLVSmibertPColellaAChatawayTKSaintR 2007 Know thy fly. Trends Genet 23 238 242

45. MarksRW 1982 Genetic Variability for Density Sensitivity of Three Components of Fitness in DROSOPHILA MELANOGASTER. Genetics 101 301 316

46. PowellJR 1997 Progress and prospects in evolutionary biology: the Drosophila model Oxford Oxford University Press 576

47. AshburnerMAGolicKGHawleyRS 2005 Drosophila: A Laboratory Handbook. Cold Spring Harbor Cold Spring Harbor Laboratory Press

48. JeongYEl-JaickKRoesslerEMuenkeMEpsteinDJ 2006 A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers. Development 133 761 772

49. DekkerTIbbaISijuKPStensmyrMCHanssonBS 2006 Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr Biol 16 101 109

50. RuebenbauerASchlyterFHanssonBSLofstedtCLarssonMC 2008 Genetic variability and robustness of host odor preference in Drosophila melanogaster. Curr Biol 18 1438 1443

51. MackayTFHeinsohnSLLymanRFMoehringAJMorganTJ 2005 Genetics and genomics of Drosophila mating behavior. Proc Natl Acad Sci U S A 102 Suppl 1 6622 6629

52. ShevelyovYYLavrovSAMikhaylovaLMNurminskyIDKulathinalRJ 2009 The B-type lamin is required for somatic repression of testis-specific gene clusters. Proc Natl Acad Sci U S A 106 3282 3287

53. LupskiJR 1998 Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14 417 422

54. StankiewiczPLupskiJR 2002 Genome architecture, rearrangements and genomic disorders. Trends Genet 18 74 82

55. SzankasiPGyslerCZehntnerULeupoldUKohliJ 1986 Mitotic recombination between dispersed but related rRNA genes of Schizosaccharomyces pombe generates a reciprocal translocation. Molecular General Genetics 202 394 402

56. KellisMPattersonNEndrizziMBirrenBLanderES 2003 Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423 241 254

57. HillCWGrayJA 1988 Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. Genetics 119 771 778

58. LiuSLSandersonKE 1995 Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci U S A 92 1018 1022

59. GonzalezJCasalsFRuizA 2004 Duplicative and conservative transpositions of larval serum protein 1 genes in the genus Drosophila. Genetics 168 253 264

60. RanzJMDíaz-CastilloCPetersenR 2011 Conserved gene order at the nuclear periphery in Drosophila. Mol Biol Evol

61. MathogDSedatJW 1989 The three-dimensional organization of polytene nuclei in male Drosophila melanogaster with compound XY or ring X chromosomes. Genetics 121 293 311

62. PickersgillHKalverdaBde WitETalhoutWFornerodM 2006 Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38 1005 1014

63. LefevreG 1976 A photographic representation and interpretation of the polytene chromosomes of Drosophila melanogaster salivary glands. AshburnerMANovitskiE The Genetics and Biology of Drosophila London Academic Press 31 66

64. AndersonWWArnoldJSammonsSAYardleyDG 1986 Frequency-dependent viabilities of Drosophila pseudoobscura karyotypes. Heredity 56 7 17

65. AnholtRRLymanRFMackayTF 1996 Effects of single P-element insertions on olfactory behavior in Drosophila melanogaster. Genetics 143 293 301

66. MiquelJLundgrenPRBenschKGAtlanH 1976 Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech Ageing Dev 5 347 370

67. GongWJGolicKG 2006 Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics 172 275 286

68. GibbsAGChippindaleAKRoseMR 1997 Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J Exp Biol 200 1821 1832

69. FaulFErdfelderELangAGBuchnerA 2007 G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39 175 191

70. XiaXQMcClellandMPorwollikSSongWCongX 2009 WebArrayDB: cross-platform microarray data analysis and public data repository. Bioinformatics 25 2425 2429

71. YangYHDudoitSLuuPLinDMPengV 2002 Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30 e15

72. SmythGK 2005 Limma: linear models for microarray data. GentlemanRCareyVDudoitSIrizarryRHuberW Bioinformatics and Computational Biology Solutions using R and Bioconductor New York Springer 397 420

73. BenjaminiYHochbergY 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57 289 300

74. HothornTBretzFWestfallP 2008 Simultaneous inference in general parametric models. Biom J 50 346 363

75. Huang daWShermanBTLempickiRA 2009 Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4 44 57

76. OhlerU 2006 Identification of core promoter modules in Drosophila and their application in accurate transcription start site prediction. Nucleic Acids Res 34 5943 5950

77. HaiderSBallesterBSmedleyDZhangJRiceP 2009 BioMart Central Portal–unified access to biological data. Nucleic Acids Res 37 W23 27

78. LawsonDArensburgerPAtkinsonPBesanskyNJBruggnerRV 2009 VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Res 37 D583 587

79. TamuraKPetersonDPetersonNStecherGNeiM 2011 MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol

80. ThompsonJDHigginsDGGibsonTJ 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 4673 4680

81. WhelanSGoldmanN 2001 A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18 691 699

82. EngstromPGFredmanDLenhardB 2008 Ancora: a web resource for exploring highly conserved noncoding elements and their association with developmental regulatory genes. Genome Biol 9 R34

83. GauntMWMilesMA 2002 An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 19 748 761

84. KrzywinskiJGrushkoOGBesanskyNJ 2006 Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol Phylogenet Evol 39 417 423

85. VieiraFGSanchez-GraciaARozasJ 2007 Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biol 8 R235

86. KlemenzRWeberUGehringWJ 1987 The white gene as a marker in a new P-element vector for gene transfer in Drosophila. Nucleic Acids Res 15 3947 3959

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#