Down-Regulating Sphingolipid Synthesis Increases Yeast Lifespan
Knowledge of the mechanisms for regulating lifespan is advancing rapidly, but lifespan is a complex phenotype and new features are likely to be identified. Here we reveal a novel approach for regulating lifespan. Using a genetic or a pharmacological strategy to lower the rate of sphingolipid synthesis, we show that Saccharomyces cerevisiae cells live longer. The longer lifespan is due in part to a reduction in Sch9 protein kinase activity and a consequent reduction in chromosomal mutations and rearrangements and increased stress resistance. Longer lifespan also arises in ways that are independent of Sch9 or caloric restriction, and we speculate on ways that sphingolipids might mediate these aspects of increased lifespan. Sch9 and its mammalian homolog S6 kinase work downstream of the target of rapamycin, TOR1, protein kinase, and play evolutionarily conserved roles in regulating lifespan. Our data establish Sch9 as a focal point for regulating lifespan by integrating nutrient signals from TOR1 with growth and stress signals from sphingolipids. Sphingolipids are found in all eukaryotes and our results suggest that pharmacological down-regulation of one or more sphingolipids may provide a means to reduce age-related diseases and increase lifespan in other eukaryotes.
Vyšlo v časopise:
Down-Regulating Sphingolipid Synthesis Increases Yeast Lifespan. PLoS Genet 8(2): e32767. doi:10.1371/journal.pgen.1002493
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002493
Souhrn
Knowledge of the mechanisms for regulating lifespan is advancing rapidly, but lifespan is a complex phenotype and new features are likely to be identified. Here we reveal a novel approach for regulating lifespan. Using a genetic or a pharmacological strategy to lower the rate of sphingolipid synthesis, we show that Saccharomyces cerevisiae cells live longer. The longer lifespan is due in part to a reduction in Sch9 protein kinase activity and a consequent reduction in chromosomal mutations and rearrangements and increased stress resistance. Longer lifespan also arises in ways that are independent of Sch9 or caloric restriction, and we speculate on ways that sphingolipids might mediate these aspects of increased lifespan. Sch9 and its mammalian homolog S6 kinase work downstream of the target of rapamycin, TOR1, protein kinase, and play evolutionarily conserved roles in regulating lifespan. Our data establish Sch9 as a focal point for regulating lifespan by integrating nutrient signals from TOR1 with growth and stress signals from sphingolipids. Sphingolipids are found in all eukaryotes and our results suggest that pharmacological down-regulation of one or more sphingolipids may provide a means to reduce age-related diseases and increase lifespan in other eukaryotes.
Zdroje
1. PowersRW3rdKaeberleinMCaldwellSDKennedyBKFieldsS 2006 Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20 174 184
2. HarrisonDEStrongRSharpZDNelsonJFAstleCM 2009 Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460 392 395
3. BjedovIToivonenJMKerrFSlackCJacobsonJ 2010 Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11 35 46
4. BlagosklonnyMV 2009 Validation of anti-aging drugs by treating age-related diseases. Aging (Albany NY) 1 281 288
5. KaeberleinM 2010 Resveratrol and rapamycin: are they anti-aging drugs? Bioessays 32 96 99
6. GoldbergAARichardVRKyryakovPBourqueSDBeachA 2010 Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes. Aging (Albany NY) 2 393 414
7. FabrizioPPozzaFPletcherSDGendronCMLongoVD 2001 Regulation of longevity and stress resistance by Sch9 in yeast. Science 292 288 290
8. KaeberleinMPowersRW3rdSteffenKKWestmanEAHuD 2005 Regulation of Yeast Replicative Life Span by TOR and Sch9 in Response to Nutrients. Science 310 1193 1196
9. SelmanCTulletJMWieserDIrvineELingardSJ 2009 Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326 140 144
10. KapahiPChenDRogersANKatewaSDLiPW 2010 With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11 453 465
11. HannunYAObeidLM 2008 Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9 139 150
12. MaceykaMMilstienSSpiegelS 2009 Sphingosine-1-phosphate: the Swiss army knife of sphingolipid signaling. J Lipid Res 50 Suppl S272 276
13. StancevicBKolesnickR 2010 Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584 1728 1740
14. MerrillAHJrWangMDParkMSullardsMC 2007 (Glyco)sphingolipidology: an amazing challenge and opportunity for systems biology. Trends Biochem Sci 32 457 468
15. DicksonRC 2008 Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res 49 909 921
16. CowartLAObeidLM 2007 Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta 1771 421 431
17. BreslowDKWeissmanJS 2010 Membranes in balance: mechanisms of sphingolipid homeostasis. Mol Cell 40 267 279
18. VellaiTTakacs-VellaiKZhangYKovacsALOroszL 2003 Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426 620
19. JiaKChenDRiddleDL 2004 The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131 3897 3906
20. UrbanJSoulardAHuberALippmanSMukhopadhyayD 2007 Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26 663 674
21. LiuKZhangXLesterRLDicksonRC 2005 The sphingoid long chain base phytosphingosine activates AGC-type protein kinases in Saccharomyces cerevisiae including Ypk1, Ypk2, and Sch9. J Biol Chem 280 22679 22987
22. RoelantsFMTorrancePDThornerJ 2004 Differential roles of PDK1- and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9. Microbiology 150 3289 3304
23. JacintoELorbergA 2008 TOR regulation of AGC kinases in yeast and mammals. Biochem J 410 19 37
24. SoulardACremonesiAMoesSSchutzFJenoP 2010 The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 21 3475 3486
25. VoordeckersKKimpeMHaesendonckxSLouwetWVerseleM 2011 Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. J Biol Chem 286 22017 22027
26. FrohlichFMoreiraKAguilarPSHubnerNCMannM 2009 A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. J Cell Biol 185 1227 1242
27. RoelantsFMBaltzAGTrottAEFereresSThornerJ 2010 A protein kinase network regulates the function of aminophospholipid flippases. Proc Natl Acad Sci U S A 107 34 39
28. MnaimnehSDavierwalaAPHaynesJMoffatJPengWT 2004 Exploration of essential gene functions via titratable promoter alleles. Cell 118 31 44
29. JorgensenPRupesISharomJRSchneperLBroachJR 2004 A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18 2491 2505
30. WeiMFabrizioPHuJGeHChengC 2008 Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4 e13 doi:10.1371/journal.pgen.0040013
31. BurtnerCRMurakamiCJKennedyBKKaeberleinM 2009 A molecular mechanism of chronological aging in yeast. Cell Cycle 8 1256 1270
32. WeinbergerMFengLPaulASmithDLJrHontzRD 2007 DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS One 2 e748 doi:10.1371/journal.pone.0000748
33. KaplanCDKaplanJ 2009 Iron acquisition and transcriptional regulation. Chem Rev 109 4536 4552
34. BurtnerCRMurakamiCJOlsenBKennedyBKKaeberleinM 2011 A genomic analysis of chronological longevity factors in budding yeast. Cell Cycle 10 1385 1396
35. LippmanSIBroachJR 2009 Protein kinase A and TORC1 activate genes for ribosomal biogenesis by inactivating repressors encoded by Dot6 and its homolog Tod6. Proc Natl Acad Sci U S A 106 19928 19933
36. HuberAFrenchSLTekotteHYerlikayaSStahlM 2011 Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L. EMBO J 30 3052 3064
37. StribinskisVRamosKS 2007 Rpm2p, a protein subunit of mitochondrial RNase P, physically and genetically interacts with cytoplasmic processing bodies. Nucleic Acids Res 35 1301 1311
38. LavoieHWhitewayM 2008 Increased respiration in the sch9Delta mutant is required for increasing chronological life span but not replicative life span. Eukaryot Cell 7 1127 1135
39. PanYShadelGS 2009 Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging (Albany NY) 1 131 145
40. FabrizioPBattistellaLVardavasRGattazzoCLiouLL 2004 Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166 1055 1067
41. FabrizioPGattazzoCBattistellaLWeiMChengC 2005 Sir2 blocks extreme life-span extension. Cell 123 655 667
42. MadiaFGattazzoCWeiMFabrizioPBurhansWC 2008 Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. J Cell Biol 180 67 81
43. ColmanRJAndersonRMJohnsonSCKastmanEKKosmatkaKJ 2009 Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325 201 204
44. AndersonRMWeindruchR 2010 Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol Metab 21 134 141
45. MulhollandJKonopkaJSinger-KrugerBZerialMBotsteinD 1999 Visualization of receptor-mediated endocytosis in yeast. Mol Biol Cell 10 799 817
46. TodaTCameronSSassPWiglerM 1988 SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP- dependent protein kinase catalytic subunits. Genes and Development 2 517 527
47. ZhangAShenYGaoWDongJ 2011 Role of Sch9 in regulating Ras-cAMP signal pathway in Saccharomyces cerevisiae. FEBS Lett 585 3026 3032
48. BarbosaADOsorioHSimsKJAlmeidaTAlvesM 2011 Role for Sit4p-dependent mitochondrial dysfunction in mediating the shortened chronological lifespan and oxidative stress sensitivity of Isc1p-deficient cells. Mol Microbiol 81 515 527
49. AertsAMFrancoisIEBammensLCammueBPSmetsB 2006 Level of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. FEBS Lett 580 1903 1907
50. D'MelloNPChildressAMFranklinDSKaleSPPinswasdiC 1994 Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269 15451 15459
51. SchorlingSValleeBBarzWPRiezmanHOesterheltD 2001 Lag1p and Lac1p Are Essential for the Acyl-CoA-dependent Ceramide Synthase Reaction in Saccharomyces cerevisae. Mol Biol Cell 12 3417 3427
52. GuillasIKirchmanPAChuardRPfefferliMJiangJC 2001 C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. Embo J 20 2655 2665
53. DicksonRCNagiecEESkrzypekMTillmanPWellsGB 1997 Sphingolipids are potential heat stress signals in Saccharomyces. Journal of Biological Chemistry 272 30196 30200
54. ZanolariBFriantSFunatoKSutterlinCStevensonBJ 2000 Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. EMBO J 19 2824 2833
55. JenkinsGMHannunYA 2001 Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae. J Biol Chem 276 8574 8581
56. MeierKDDelocheOKajiwaraKFunatoKRiezmanH 2006 Sphingoid Base Is Required for Translation Initiation during Heat Stress in Saccharomyces cerevisiae. Mol Biol Cell 17 1164 1175
57. SkrzypekMSNagiecMMLesterRLDicksonRC 1998 Inhibition of amino acid transport by sphingoid long chain bases in Saccharomyces cerevisiae. J Biol Chem 273 2829 2834
58. ChungNMaoCHeitmanJHannunYAObeidLM 2001 Phytosphingosine as a specific inhibitor of growth and nutrient import in Saccharomyces cerevisiae. J Biol Chem 276 35614 35621
59. WangJJiangJCJazwinskiSM 2010 Gene regulatory changes in yeast during life extension by nutrient limitation. Exp Gerontol 45 621 631
60. Nikolova-KarakashianMKarakashianARutkuteK 2008 Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem 49 469 486
61. SacketSJChungHYOkajimaFImDS 2009 Increase in sphingolipid catabolic enzyme activity during aging. Acta Pharmacol Sin 30 1454 1461
62. JanaAHoganELPahanK 2009 Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 278 5 15
63. GuentherGGEdingerAL 2009 A new take on ceramide: starving cells by cutting off the nutrient supply. Cell Cycle 8 1122 1126
64. Ohno-IwashitaYShimadaYHayashiMInomataM 2010 Plasma membrane microdomains in aging and disease. Geriatr Gerontol Int 10 Suppl 1 S41 52
65. Hernandez-CorbachoMJJenkinsRWClarkeCJHannunYAObeidLM 2011 Accumulation of Long-Chain Glycosphingolipids during Aging Is Prevented by Caloric Restriction. PLoS One 6 e20411 doi:10.1371/journal.pone.0020411
66. YangQGongZJZhouYYuanJQChengJ 2010 Role of Drosophila alkaline ceramidase (Dacer) in Drosophila development and longevity. Cell Mol Life Sci
67. SikorskiRSHieterP 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122 19 27
68. BuedeRRinker-SchafferCPintoWJLesterRLDicksonRC 1991 Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids. Journal of Bacteriology 173 4325 4332
69. NagiecMMBaltisbergerJAWellsGBLesterRLDicksonRC 1994 The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proceedings of the National Academy of Sciences USA 91 7899 7902
70. ChenCKolodnerRD 1999 Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23 81 85
71. LesterRLDicksonRC 2001 High-performance liquid chromatography analysis of molecular species of sphingolipid-related long chain bases and long chain base phosphates in Saccharomyces cerevisiae after derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Anal Biochem 298 283 292
72. DicksonRCNagiecEEWellsGBNagiecMMLesterRL 1997 Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1(YDR072c) gene. Journal of Biological Chemistry 272 29620 29625
73. KushnirovVV 2000 Rapid and reliable protein extraction from yeast. Yeast 16 857 860
74. DicksonRCLesterRL 2002 Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta 1583 13 25
75. FunatoKValleeBRiezmanH 2002 Biosynthesis and trafficking of sphingolipids in the yeast Saccharomyces cerevisiae. Biochemistry 41 15105 15114
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 2
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Gene Expression and Stress Response Mediated by the Epigenetic Regulation of a Transposable Element Small RNA
- Contrasting Properties of Gene-Specific Regulatory, Coding, and Copy Number Mutations in : Frequency, Effects, and Dominance
- Homeobox Genes Critically Regulate Embryo Implantation by Controlling Paracrine Signaling between Uterine Stroma and Epithelium
- Nondisjunction of a Single Chromosome Leads to Breakage and Activation of DNA Damage Checkpoint in G2