Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency
Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology.
Vyšlo v časopise:
Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency. PLoS Genet 8(3): e32767. doi:10.1371/journal.pgen.1002603
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002603
Souhrn
Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology.
Zdroje
1. HershbergRPetrovDA 2009 General rules for optimal codon choice. PLoS Genet 5 e1000556 doi:10.1371/journal.pgen.1000556
2. SharpPMCoweEHigginsDGShieldsDCWolfeKH 1988 Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16 8207 8211
3. IkemuraT 1985 Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2 13 34
4. IkemuraT 1981 Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 151 389 409
5. BulmerM 1991 The selection-mutation-drift theory of synonymous codon usage. Genetics 129 897 907
6. HershbergRPetrovDA 2008 Selection on codon bias. Annu Rev Genet 42 287 299
7. DrummondDAWilkeCO 2008 Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134 341 352
8. StoletzkiNEyre-WalkerA 2007 Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol Biol Evol 24 374 381
9. AkashiH 1994 Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136 927 935
10. ZhouTWeemsMWilkeCO 2009 Translationally optimal codons associate with structurally sensitive sites in proteins. Mol Biol Evol 26 1571 1580
11. AkashiH 2001 Gene expression and molecular evolution. Curr Opin Genet Dev 11 660 666
12. KudlaGMurrayAWTollerveyDPlotkinJB 2009 Coding-sequence determinants of gene expression in Escherichia coli. Science 324 255 258
13. ForchhammerJLindahlL 1971 Growth rate of polypeptide chains as a function of the cell growth rate in a mutant of Escherichia coli 15. J Mol Biol 55 563 568
14. BoehlkeKWFriesenJD 1975 Cellular content of ribonucleic acid and protein in Saccharomyces cerevisiae as a function of exponential growth rate: calculation of the apparent peptide chain elongation rate. J Bacteriol 121 429 433
15. WarnerJR 1999 The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24 437 440
16. IkemuraT 1982 Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol 158 573 597
17. CarliniDBStephanW 2003 In vivo introduction of unpreferred synonymous codons into the Drosophila Adh gene results in reduced levels of ADH protein. Genetics 163 239 243
18. IngoliaNTGhaemmaghamiSNewmanJRWeissmanJS 2009 Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324 218 223
19. SharpPMTuohyTMMosurskiKR 1986 Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 14 5125 5143
20. SharpPMLiWH 1987 The codon Adaptation Index–a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15 1281 1295
21. TullerTCarmiAVestsigianKNavonSDorfanY 2010 An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141 344 354
22. PercudaniRPavesiAOttonelloS 1997 Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol 268 322 330
23. SokalRRRohlfFJ 1995 Biometry New York Freeman and Company
24. OgleJMRamakrishnanV 2005 Structural insights into translational fidelity. Annu Rev Biochem 74 129 177
25. VarenneSBucJLloubesRLazdunskiC 1984 Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol 180 549 576
26. von der HaarT 2008 A quantitative estimation of the global translational activity in logarithmically growing yeast cells. BMC Syst Biol 2 87
27. CannarozziGSchraudolphNNFatyMvon RohrPFribergMT 2010 A role for codon order in translation dynamics. Cell 141 355 367
28. DongHNilssonLKurlandCG 1996 Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260 649 663
29. RochaEP 2004 Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 14 2279 2286
30. BulmerM 1987 Coevolution of codon usage and transfer RNA abundance. Nature 325 728 730
31. LiljenstromHvon HeijneGBlombergCJohanssonJ 1985 The tRNA cycle and its relation to the rate of protein synthesis. Eur Biophys J 12 115 119
32. GuWZhouTWilkeCO 2010 A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput Biol 6 e1000664 doi:10.1371/journal.pcbi.1000664
33. TullerTWaldmanYYKupiecMRuppinE 2010 Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci U S A 107 3645 3650
34. GerrishPJLenskiRE 1998 The fate of competing beneficial mutations in an asexual population. Genetica 102–103 127 144
35. AkashiH 2003 Translational selection and yeast proteome evolution. Genetics 164 1291 1303
36. DuretL 2000 tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet 16 287 289
37. GuXHewett-EmmettDLiWH 1998 Directional mutational pressure affects the amino acid composition and hydrophobicity of proteins in bacteria. Genetica 102–103 383 391
38. ZhangJ 2000 Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes. J Mol Evol 50 56 68
39. AkashiHGojoboriT 2002 Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci U S A 99 3695 3700
40. ShachraiIZaslaverAAlonUDekelE 2010 Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth. Mol Cell 38 758 767
41. CurranJFYarusM 1989 Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J Mol Biol 209 65 77
42. VimaladithanAFarabaughPJ 1994 Special peptidyl-tRNA molecules can promote translational frameshifting without slippage. Mol Cell Biol 14 8107 8116
43. SorensenMAKurlandCGPedersenS 1989 Codon usage determines translation rate in Escherichia coli. J Mol Biol 207 365 377
44. RobinsonMLilleyRLittleSEmtageJSYarrantonG 1984 Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res 12 6663 6671
45. SiwiakMZielenkiewiczP 2010 A comprehensive, quantitative, and genome-wide model of translation. PLoS Comput Biol 7 e10000865 doi:10.1371/journal.pcbi.1002199
46. IngoliaNTLareauLFWeissmanJS 2011 Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147 789 802
47. AnderssonSGKurlandCG 1990 Codon preferences in free-living microorganisms. Microbiol Rev 54 198 210
48. DittmarKAGoodenbourJMPanT 2006 Tissue-specific differences in human transfer RNA expression. PLoS Genet 2 e221 doi:10.1371/journal.pgen.0020221
49. BrockmannRBeyerAHeinischJJWilhelmT 2007 Posttranscriptional expression regulation: what determines translation rates? PLoS Comput Biol 3 e57 doi:10.1371/journal.pcbi.0030057
50. PowellJRMoriyamaEN 1997 Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci U S A 94 7784 7790
51. KramerEBVallabhaneniHMayerLMFarabaughPJ 2010 A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae. RNA 16 1797 1808
52. PrecupJParkerJ 1987 Missense misreading of asparagine codons as a function of codon identity and context. J Biol Chem 262 11351 11355
53. RochaEPDanchinA 2004 An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 21 108 116
54. YangJRZhuangSMZhangJ 2010 Impact of translational error-induced and error-free misfolding on the rate of protein evolution. Mol Syst Biol 6 421
55. ChamaryJVParmleyJLHurstLD 2006 Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 7 98 108
56. GustafssonCGovindarajanSMinshullJ 2004 Codon bias and heterologous protein expression. Trends Biotechnol 22 346 353
57. WelchMGovindarajanSNessJEVillalobosAGurneyA 2009 Design parameters to control synthetic gene expression in Escherichia coli. PLoS ONE 4 e7002 doi:10.1371/journal.pone.0007002
58. HolstegeFCJenningsEGWyrickJJLeeTIHengartnerCJ 1998 Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95 717 728
59. BeyerAHollunderJNasheuerHPWilhelmT 2004 Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol Cell Proteomics 3 1083 1092
60. GhaemmaghamiSHuhWKBowerKHowsonRWBelleA 2003 Global analysis of protein expression in yeast. Nature 425 737 741
61. ChoRJCampbellMJWinzelerEASteinmetzLConwayA 1998 A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2 65 73
62. WilhelmBTMargueratSWattSSchubertFWoodV 2008 Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453 1239 1243
63. HillierLWReinkeVGreenPHirstMMarraMA 2009 Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome Res 19 657 666
64. DohmJCLottazCBorodinaTHimmelbauerH 2008 Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 36 e105
65. WrightF 1990 The ‘effective number of codons’ used in a gene. Gene 87 23 29
66. NovembreJA 2002 Accounting for background nucleotide composition when measuring codon usage bias. Mol Biol Evol 19 1390 1394
67. UemuraSAitkenCEKorlachJFlusbergBATurnerSW 2010 Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464 1012 1017
68. JakubowskiHGoldmanE 1984 Quantities of individual aminoacyl-tRNA families and their turnover in Escherichia coli. J Bacteriol 158 769 776
69. ShanerNCCampbellRESteinbachPAGiepmansBNPalmerAE 2004 Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22 1567 1572
70. MumbergDMullerRFunkM 1995 Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156 119 122
71. NagaiTIbataKParkESKubotaMMikoshibaK 2002 A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20 87 90
72. HeXQianWWangZLiYZhangJ 2010 Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat Genet 42 272 276
73. RodninaMVWintermeyerW 2001 Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu Rev Biochem 70 415 435
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- PIF4–Mediated Activation of Expression Integrates Temperature into the Auxin Pathway in Regulating Hypocotyl Growth
- Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations
- A Splice Site Variant in the Bovine Gene Compromises Growth and Regulation of the Inflammatory Response
- Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database