LMW-E/CDK2 Deregulates Acinar Morphogenesis, Induces Tumorigenesis, and Associates with the Activated b-Raf-ERK1/2-mTOR Pathway in Breast Cancer Patients
Elastase-mediated cleavage of cyclin E generates low molecular weight cyclin E (LMW-E) isoforms exhibiting enhanced CDK2–associated kinase activity and resistance to inhibition by CDK inhibitors p21 and p27. Approximately 27% of breast cancers express high LMW-E protein levels, which significantly correlates with poor survival. The objective of this study was to identify the signaling pathway(s) deregulated by LMW-E expression in breast cancer patients and to identify pharmaceutical agents to effectively target this pathway. Ectopic LMW-E expression in nontumorigenic human mammary epithelial cells (hMECs) was sufficient to generate xenografts with greater tumorigenic potential than full-length cyclin E, and the tumorigenicity was augmented by in vivo passaging. However, cyclin E mutants unable to interact with CDK2 protected hMECs from tumor development. When hMECs were cultured on Matrigel, LMW-E mediated aberrant acinar morphogenesis, including enlargement of acinar structures and formation of multi-acinar complexes, as denoted by reduced BIM and elevated Ki67 expression. Similarly, inducible expression of LMW-E in transgenic mice generated hyper-proliferative terminal end buds resulting in enhanced mammary tumor development. Reverse-phase protein array assay of 276 breast tumor patient samples and cells cultured on monolayer and in three-dimensional Matrigel demonstrated that, in terms of protein expression profile, hMECs cultured in Matrigel more closely resembled patient tissues than did cells cultured on monolayer. Additionally, the b-Raf-ERK1/2-mTOR pathway was activated in LMW-E–expressing patient samples, and activation of this pathway was associated with poor disease-specific survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (a pan kinase inhibitor targeting b-Raf) effectively prevented aberrant acinar formation in LMW-E–expressing cells by inducing G1/S cell cycle arrest. LMW-E requires CDK2–associated kinase activity to induce mammary tumor formation by disrupting acinar development. The b-Raf-ERK1/2-mTOR signaling pathway is aberrantly activated in breast cancer and can be suppressed by combination treatment with roscovitine plus either rapamycin or sorafenib.
Vyšlo v časopise:
LMW-E/CDK2 Deregulates Acinar Morphogenesis, Induces Tumorigenesis, and Associates with the Activated b-Raf-ERK1/2-mTOR Pathway in Breast Cancer Patients. PLoS Genet 8(3): e32767. doi:10.1371/journal.pgen.1002538
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002538
Souhrn
Elastase-mediated cleavage of cyclin E generates low molecular weight cyclin E (LMW-E) isoforms exhibiting enhanced CDK2–associated kinase activity and resistance to inhibition by CDK inhibitors p21 and p27. Approximately 27% of breast cancers express high LMW-E protein levels, which significantly correlates with poor survival. The objective of this study was to identify the signaling pathway(s) deregulated by LMW-E expression in breast cancer patients and to identify pharmaceutical agents to effectively target this pathway. Ectopic LMW-E expression in nontumorigenic human mammary epithelial cells (hMECs) was sufficient to generate xenografts with greater tumorigenic potential than full-length cyclin E, and the tumorigenicity was augmented by in vivo passaging. However, cyclin E mutants unable to interact with CDK2 protected hMECs from tumor development. When hMECs were cultured on Matrigel, LMW-E mediated aberrant acinar morphogenesis, including enlargement of acinar structures and formation of multi-acinar complexes, as denoted by reduced BIM and elevated Ki67 expression. Similarly, inducible expression of LMW-E in transgenic mice generated hyper-proliferative terminal end buds resulting in enhanced mammary tumor development. Reverse-phase protein array assay of 276 breast tumor patient samples and cells cultured on monolayer and in three-dimensional Matrigel demonstrated that, in terms of protein expression profile, hMECs cultured in Matrigel more closely resembled patient tissues than did cells cultured on monolayer. Additionally, the b-Raf-ERK1/2-mTOR pathway was activated in LMW-E–expressing patient samples, and activation of this pathway was associated with poor disease-specific survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (a pan kinase inhibitor targeting b-Raf) effectively prevented aberrant acinar formation in LMW-E–expressing cells by inducing G1/S cell cycle arrest. LMW-E requires CDK2–associated kinase activity to induce mammary tumor formation by disrupting acinar development. The b-Raf-ERK1/2-mTOR signaling pathway is aberrantly activated in breast cancer and can be suppressed by combination treatment with roscovitine plus either rapamycin or sorafenib.
Zdroje
1. BortnerDMRosenbergMP 1997 Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol Cell Biol 17 453 459
2. KeyomarsiKHerliczekTW 1997 The role of cyclin E in cell proliferation, development and cancer. Prog Cell Cycle Res 3 171 191
3. BitoTUedaMItoAIchihashiM 1997 Less expression of cyclin E in cutaneous squamous cell carcinomas than in benign and premalignant keratinocytic lesions. J Cutan Pathol 24 305 308
4. KeyomarsiKConteDJrToyofukuWFoxMP 1995 Deregulation of cyclin E in breast cancer. Oncogene 11 941 950
5. DuttaAChandraRLeiterLMLesterS 1995 Cyclins as markers of tumor proliferation: immunocytochemical studies in breast cancer. Proc Natl Acad Sci U S A 92 5386 5390
6. ErlansonMPortinCLinderholmBLindhJRoosG 1998 Expression of cyclin E and the cyclin-dependent kinase inhibitor p27 in malignant lymphomas-prognostic implications. Blood 92 770 777
7. SakaguchiTWatanabeASawadaHYamadaYYamashitaJ 1998 Prognostic value of cyclin E and p53 expression in gastric carcinoma. Cancer 82 1238 1243
8. KoffAGiordanoADesaiDYamashitaKHarperJW 1992 Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257 1689 1694
9. DraettaGF 1994 Mammalian G1 cyclins. Curr Opin Cell Biol 6 842 846
10. BresnahanWABoldoghIMaTAlbrechtTThompsonEA 1996 Cyclin E/Cdk2 activity is controlled by different mechanisms in the G0 and G1 phases of the cell cycle. Cell Growth Differ 7 1283 1290
11. KeyomarsiKPardeeAB 1993 Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci U S A 90 1112 1116
12. HarwellRMPorterDCDanesCKeyomarsiK 2000 Processing of cyclin E differs between normal and tumor breast cells. Cancer Res 60 481 489
13. PorterDCZhangNDanesCMcGahrenMJHarwellRM 2001 Tumor-specific proteolytic processing of cyclin E generates hyperactive lower-molecular-weight forms. Mol Cell Biol 21 6254 6269
14. PorterDCKeyomarsiK 2000 Novel splice variants of cyclin E with altered substrate specificity. Nucleic Acids Res 28 E101
15. WingateHZhangNMcGarhenMJBedrosianIHarperJW 2005 The tumor-specific hyperactive forms of cyclin E are resistant to inhibition by p21 and p27. J Biol Chem 280 15148 15157
16. KeyomarsiKTuckerSLBuchholzTACallisterMDingY 2002 Cyclin E and survival in patients with breast cancer. N Engl J Med 347 1566 1575
17. WeaverVMLelievreSLakinsJNChrenekMAJonesJC 2002 beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2 205 216
18. GudjonssonTRonnov-JessenLVilladsenRRankFBissellMJ 2002 Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115 39 50
19. PetersenOWRonnov-JessenLHowlettARBissellMJ 1992 Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 89 9064 9068
20. Barcellos-HoffMHAggelerJRamTGBissellMJ 1989 Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105 223 235
21. MuthuswamySKLiDLelievreSBissellMJBruggeJS 2001 ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3 785 792
22. WeigeltBLoATParkCCGrayJWBissellMJ 2010 HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat 122 35 43
23. FataJEMoriHEwaldAJZhangHYaoE 2007 The MAPK(ERK-1,2) pathway integrates distinct and antagonistic signals from TGFalpha and FGF7 in morphogenesis of mouse mammary epithelium. Dev Biol 306 193 207
24. ParkCCZhangHPallaviciniMGrayJWBaehnerF 2006 Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res 66 1526 1535
25. WingateHPuskasADuongMBuiTRichardsonD 2009 Low molecular weight cyclin E is specific in breast cancer and is associated with mechanisms of tumor progression. Cell Cycle 8 1062 1068
26. YokotaTBuiTLiuYYiMHuntKK 2007 Differential regulation of elafin in normal and tumor-derived mammary epithelial cells is mediated by CCAAT/enhancer binding protein beta. Cancer Res 67 11272 11283
27. Nanos-WebbAJabbourNAMultaniASWingateHOumataN 2011 Targeting low molecular weight cyclin E (LMW-E) in breast cancer. Breast cancer research and treatment
28. AkliSVan PeltCSBuiTMeijerLKeyomarsiK 2011 Cdk2 is required for breast cancer mediated by the low-molecular-weight isoform of cyclin E. Cancer Res 71 3377 3386
29. ClurmanBESheaffRJThressKGroudineMRobertsJM 1996 Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 10 1979 1990
30. DebnathJMillsKRCollinsNLReginatoMJMuthuswamySK 2002 The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111 29 40
31. ReginatoMJMillsKRBeckerEBLynchDKBonniA 2005 Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol Cell Biol 25 4591 4601
32. AkliSVan PeltCSBuiTMultaniASChangS 2007 Overexpression of the low molecular weight cyclin E in transgenic mice induces metastatic mammary carcinomas through the disruption of the ARF-p53 pathway. Cancer Res 67 7212 7222
33. LiottaLA 1986 Tumor invasion and metastases–role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res 46 1 7
34. TibesRQiuYLuYHennessyBAndreeffM 2006 Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5 2512 2521
35. KornblauSMTibesRQiuYHChenWKantarjianHM 2009 Functional proteomic profiling of AML predicts response and survival. Blood 113 154 164
36. HennessyBTGonzalez-AnguloAMStemke-HaleKGilcreaseMZKrishnamurthyS 2009 Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69 4116 4124
37. Bagheri-YarmandRBiernackaAHuntKKKeyomarsiK 2010 Low molecular weight cyclin E overexpression shortens mitosis, leading to chromosome missegregation and centrosome amplification. Cancer Res 70 5074 5084
38. AkliSZhengPJMultaniASWingateHFPathakS 2004 Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Res 64 3198 3208
39. MuellerMMPeterWMappesMHuelsenASteinbauerH 2001 Tumor progression of skin carcinoma cells in vivo promoted by clonal selection, mutagenesis, and autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. Am J Pathol 159 1567 1579
40. PajalungaDCrescenziM 2004 Regulation of cyclin E protein levels through E2F-mediated inhibition of degradation. Cell Cycle 3 1572 1578
41. GengYEatonENPiconMRobertsJMLundbergAS 1996 Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene 12 1173 1180
42. AkliSBuiTWingateHBiernackaAMoulderS 2010 Low-molecular-weight cyclin E can bypass letrozole-induced G1 arrest in human breast cancer cells and tumors. Clin Cancer Res 16 1179 1190
43. MittendorfEALiuYTuckerSLMcKenzieTQiaoN 2010 A novel interaction between HER2/neu and cyclin E in breast cancer. Oncogene 29 3896 3907
44. LambertLAQiaoNHuntKKLambertDHMillsGB 2008 Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res 68 7966 7974
45. MacCallumDEMelvilleJFrameSWattKAndersonS 2005 Seliciclib (CYC202, R-Roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1. Cancer Res 65 5399 5407
46. FoellJLMaxDGiersbergCKorholzDStaegeMS 2008 Sensitivity of Hodgkin's lymphoma cell lines to the cell cycle inhibitor roscovitine. Anticancer Res 28 887 894
47. PampaloniFReynaudEGStelzerEH 2007 The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8 839 845
48. FournierMVMartinKJKennyPAXhajaKBoschI 2006 Gene expression signature in organized and growth-arrested mammary acini predicts good outcome in breast cancer. Cancer Res 66 7095 7102
49. MartinKJPatrickDRBissellMJFournierMV 2008 Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS One 3 e2994
50. SteelmanLSPohnertSCSheltonJGFranklinRABertrandFE 2004 JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18 189 218
51. HoylePEMoyePWSteelmanLSBlalockWLFranklinRA 2000 Differential abilities of the Raf family of protein kinases to abrogate cytokine dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism. Leukemia 14 642 656
52. WoodsDParryDCherwinskiHBoschELeesE 1997 Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 17 5598 5611
53. BandVSagerR 1989 Distinctive traits of normal and tumor-derived human mammary epithelial cells expressed in a medium that supports long-term growth of both cell types. Proc Natl Acad Sci U S A 86 1249 1253
54. Gray-BablinJZalvideJFoxMPKnickerbockerCJDeCaprioJA 1996 Cyclin E, a redundant cyclin in breast cancer. Proc Natl Acad Sci U S A 93 15215 15220
55. MoodySESarkisianCJHahnKTGuntherEJPickupS 2002 Conditional activation of Neu in the mammary epitheilium of transgenic mice results in reersible pulmonary metastasis. Cancer Cell 2 451 461
56. DebnathJMuthuswamySKBruggeJS 2003 Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30 256 268
57. KaplanEMeierP 1958 Nonparametric estimation from incomplete observations. J Am Stat Assoc 53 457 481
58. CoxD 1972 Regression models and life-tables (with discussion). J R Stat Soc Series B 34 187 220
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- PIF4–Mediated Activation of Expression Integrates Temperature into the Auxin Pathway in Regulating Hypocotyl Growth
- Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations
- A Splice Site Variant in the Bovine Gene Compromises Growth and Regulation of the Inflammatory Response
- Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database