#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Tcf7 Is an Important Regulator of the Switch of Self-Renewal and Differentiation in a Multipotential Hematopoietic Cell Line


A critical problem in biology is understanding how cells choose between self-renewal and differentiation. To generate a comprehensive view of the mechanisms controlling early hematopoietic precursor self-renewal and differentiation, we used systems-based approaches and murine EML multipotential hematopoietic precursor cells as a primary model. EML cells give rise to a mixture of self-renewing Lin-SCA+CD34+ cells and partially differentiated non-renewing Lin-SCA-CD34− cells in a cell autonomous fashion. We identified and validated the HMG box protein TCF7 as a regulator in this self-renewal/differentiation switch that operates in the absence of autocrine Wnt signaling. We found that Tcf7 is the most down-regulated transcription factor when CD34+ cells switch into CD34− cells, using RNA–Seq. We subsequently identified the target genes bound by TCF7, using ChIP–Seq. We show that TCF7 and RUNX1 (AML1) bind to each other's promoter regions and that TCF7 is necessary for the production of the short isoforms, but not the long isoforms of RUNX1, suggesting that TCF7 and the short isoforms of RUNX1 function coordinately in regulation. Tcf7 knock-down experiments and Gene Set Enrichment Analyses suggest that TCF7 plays a dual role in promoting the expression of genes characteristic of self-renewing CD34+ cells while repressing genes activated in partially differentiated CD34− state. Finally a network of up-regulated transcription factors of CD34+ cells was constructed. Factors that control hematopoietic stem cell (HSC) establishment and development, cell growth, and multipotency were identified. These studies in EML cells demonstrate fundamental cell-intrinsic properties of the switch between self-renewal and differentiation, and yield valuable insights for manipulating HSCs and other differentiating systems.


Vyšlo v časopise: Tcf7 Is an Important Regulator of the Switch of Self-Renewal and Differentiation in a Multipotential Hematopoietic Cell Line. PLoS Genet 8(3): e32767. doi:10.1371/journal.pgen.1002565
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002565

Souhrn

A critical problem in biology is understanding how cells choose between self-renewal and differentiation. To generate a comprehensive view of the mechanisms controlling early hematopoietic precursor self-renewal and differentiation, we used systems-based approaches and murine EML multipotential hematopoietic precursor cells as a primary model. EML cells give rise to a mixture of self-renewing Lin-SCA+CD34+ cells and partially differentiated non-renewing Lin-SCA-CD34− cells in a cell autonomous fashion. We identified and validated the HMG box protein TCF7 as a regulator in this self-renewal/differentiation switch that operates in the absence of autocrine Wnt signaling. We found that Tcf7 is the most down-regulated transcription factor when CD34+ cells switch into CD34− cells, using RNA–Seq. We subsequently identified the target genes bound by TCF7, using ChIP–Seq. We show that TCF7 and RUNX1 (AML1) bind to each other's promoter regions and that TCF7 is necessary for the production of the short isoforms, but not the long isoforms of RUNX1, suggesting that TCF7 and the short isoforms of RUNX1 function coordinately in regulation. Tcf7 knock-down experiments and Gene Set Enrichment Analyses suggest that TCF7 plays a dual role in promoting the expression of genes characteristic of self-renewing CD34+ cells while repressing genes activated in partially differentiated CD34− state. Finally a network of up-regulated transcription factors of CD34+ cells was constructed. Factors that control hematopoietic stem cell (HSC) establishment and development, cell growth, and multipotency were identified. These studies in EML cells demonstrate fundamental cell-intrinsic properties of the switch between self-renewal and differentiation, and yield valuable insights for manipulating HSCs and other differentiating systems.


Zdroje

1. ZhouJXHuangS 2011 Understanding gene circuits at cell-fate branch points for rational cell reprogramming. Trends Genet 27 55 62

2. WaltzerLGobertVOsmanDHaenlinM 2010 Transcription factor interplay during Drosophila haematopoiesis. Int J Dev Biol 54 1107 1115

3. BertrandVHobertO 2010 Lineage programming: navigating through transient regulatory states via binary decisions. Curr Opin Genet Dev 20 362 368

4. JukamDDesplanC 2010 Binary fate decisions in differentiating neurons. Curr Opin Neurobiol 20 6 13

5. BryderDRossiDJWeissmanIL 2006 Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169 338 346

6. ShizuruJANegrinRSWeissmanIL 2005 Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 56 509 538

7. FaubertALessardJSauvageauG 2004 Are genetic determinants of asymmetric stem cell division active in hematopoietic stem cells? Oncogene 23 7247 7255

8. MooreKALemischkaIR 2004 “Tie-ing” down the hematopoietic niche. Cell 118 139 140

9. TsaiSBartelmezSSitnickaECollinsS 1994 Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymphoid, myeloid, and erythroid development. Genes Dev 8 2831 2841

10. Pinto doOPKolterudACarlssonL 1998 Expression of the LIM-homeobox gene LH2 generates immortalized steel factor-dependent multipotent hematopoietic precursors. Embo J 17 5744 5756

11. YuWMHawleyTSHawleyRGQuCK 2002 Immortalization of yolk sac-derived precursor cells. Blood 100 3828 3831

12. SauvageauGIscoveNNHumphriesRK 2004 In vitro and in vivo expansion of hematopoietic stem cells. Oncogene 23 7223 7232

13. YeZJKlugerYLianZWeissmanSM 2005 Two types of precursor cells in a multipotential hematopoietic cell line. Proc Natl Acad Sci U S A 102 18461 18466

14. RaichNCleggCHGroftiJRomeoPHStamatoyannopoulosG 1995 GATA1 and YY1 are developmental repressors of the human epsilon-globin gene. Embo J 14 801 809

15. LooseMSwiersGPatientR 2007 Transcriptional networks regulating hematopoietic cell fate decisions. Curr Opin Hematol 14 307 314

16. SwiersGPatientRLooseM 2006 Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev Biol 294 525 540

17. LiewCWRandKDSimpsonRJYungWWMansfieldRE 2006 Molecular analysis of the interaction between the hematopoietic master transcription factors GATA-1 and PU.1. J Biol Chem 281 28296 28306

18. BarkerNMorinPJCleversH 2000 The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 77 1 24

19. CleversHvan de WeteringM 1997 TCF/LEF factor earn their wings. Trends Genet 13 485 489

20. EastmanQGrosschedlR 1999 Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 11 233 240

21. ReyaTDuncanAWAillesLDomenJSchererDC 2003 A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423 409 414

22. CongdonKLVoermansCFergusonECDiMascioLNUqoezwaM 2008 Activation of Wnt signaling in hematopoietic regeneration. Stem Cells 26 1202 1210

23. StaalFJLuisTC 2010 Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions. J Cell Biochem 109 844 849

24. WillertKBrownJDDanenbergEDuncanAWWeissmanIL 2003 Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423 448 452

25. StaalFJCleversHC 2005 WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol 5 21 30

26. ZhouQChipperfieldHMeltonDAWongWH 2007 A gene regulatory network in mouse embryonic stem cells. Proc Natl Acad Sci U S A 104 16438 16443

27. KurokawaMHiraiH 2003 Role of AML1/Runx1 in the pathogenesis of hematological malignancies. Cancer Sci 94 841 846

28. FriedmanAD 2009 Cell cycle and developmental control of hematopoiesis by Runx1. J Cell Physiol 219 520 524

29. ColeMFJohnstoneSENewmanJJKageyMHYoungRA 2008 Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22 746 755

30. GradlDKuhlMWedlichD 1999 The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 19 5576 5587

31. CronauerMVSchulzWAAckermannRBurchardtM 2005 Effects of WNT/beta-catenin pathway activation on signaling through T-cell factor and androgen receptor in prostate cancer cell lines. Int J Oncol 26 1033 1040

32. RobertsonGHirstMBainbridgeMBilenkyMZhaoY 2007 Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4 651 657

33. JohnsonDSMortazaviAMyersRMWoldB 2007 Genome-wide mapping of in vivo protein-DNA interactions. Science 316 1497 1502

34. AshburnerMBallCABlakeJABotsteinDButlerH 2000 Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25 25 29

35. MaereSHeymansKKuiperM 2005 BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21 3448 3449

36. HugBAAhmedNRobbinsJALazarMA 2004 A chromatin immunoprecipitation screen reveals protein kinase Cbeta as a direct RUNX1 target gene. J Biol Chem 279 825 830

37. SubramanianATamayoPMoothaVKMukherjeeSEbertBL 2005 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102 15545 15550

38. DeneaultECellotSFaubertALaverdureJPFrechetteM 2009 A functional screen to identify novel effectors of hematopoietic stem cell activity. Cell 137 369 379

39. ZhuJEmersonSG 2002 Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21 3295 3313

40. PinaCEnverT 2007 Differential contributions of haematopoietic stem cells to foetal and adult haematopoiesis: insights from functional analysis of transcriptional regulators. Oncogene 26 6750 6765

41. RailoAPajunenAItarantaPNaillatFVuoristoJ 2009 Genomic response to Wnt signalling is highly context-dependent–evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets. Exp Cell Res 315 2690 2704

42. GalceranJFarinasIDepewMJCleversHGrosschedlR 1999 Wnt3a-/–like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice. Genes Dev 13 709 717

43. VerbeekSIzonDHofhuisFRobanus-MaandagEte RieleH 1995 An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374 70 74

44. WeberBNChiAWChavezAYashiro-OhtaniYYangQ 2011 A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476 63 68

45. KumanoKKurokawaM 2010 The role of Runx1/AML1 and Evi-1 in the regulation of hematopoietic stem cells. J Cell Physiol 222 282 285

46. RobertsonAJDickeyCEMcCarthyJJCoffmanJA 2002 The expression of SpRunt during sea urchin embryogenesis. Mech Dev 117 327 330

47. TsuzukiSHongDGuptaRMatsuoKSetoM 2007 Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. PLoS Med 4 e172 doi:10.1371/journal.pmed.0040172

48. WilsonNKMiranda-SaavedraDKinstonSBonadiesNFosterSD 2009 The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development. Blood 113 5456 5465

49. DolgachevVThomasMBerlinALukacsNW 2007 Stem cell factor-mediated activation pathways promote murine eosinophil CCL6 production and survival. J Leukoc Biol 81 1111 1119

50. WuJQHabeggerLNoisaPSzekelyAQiuC 2010 Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci U S A 107 5254 5259

51. MortazaviAWilliamsBAMcCueKSchaefferLWoldB 2008 Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods

52. MorganMAndersSLawrenceMAboyounPPagesH 2009 ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25 2607 2608

53. VaquerizasJMKummerfeldSKTeichmannSALuscombeNM 2009 A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10 252 263

54. HartmanSEBertonePNathAKRoyceTEGersteinM 2005 Global changes in STAT target selection and transcription regulation upon interferon treatments. Genes Dev 19 2953 2968

55. EuskirchenGMRozowskyJSWeiCLLeeWHZhangZD 2007 Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res 17 898 909

56. RahaDWangZMoqtaderiZWuLZhongG 2010 Close association of RNA polymerase II and many transcription factors with Pol III genes. Proc Natl Acad Sci U S A 107 3639 3644

57. RozowskyJEuskirchenGAuerbachRKZhangZDGibsonT 2009 PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27 66 75

58. ShannonPMarkielAOzierOBaligaNSWangJT 2003 Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13 2498 2504

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#