#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Synthetic Lethality of Cohesins with PARPs and Replication Fork Mediators


Synthetic lethality has been proposed as a way to leverage the genetic differences found in tumor cells to affect their selective killing. Cohesins, which tether sister chromatids together until anaphase onset, are mutated in a variety of tumor types. The elucidation of synthetic lethal interactions with cohesin mutants therefore identifies potential therapeutic targets. We used a cross-species approach to identify robust negative genetic interactions with cohesin mutants. Utilizing essential and non-essential mutant synthetic genetic arrays in Saccharomyces cerevisiae, we screened genome-wide for genetic interactions with hypomorphic mutations in cohesin genes. A somatic cell proliferation assay in Caenorhabditis elegans demonstrated that the majority of interactions were conserved. Analysis of the interactions found that cohesin mutants require the function of genes that mediate replication fork progression. Conservation of these interactions between replication fork mediators and cohesin in both yeast and C. elegans prompted us to test whether other replication fork mediators not found in the yeast were required for viability in cohesin mutants. PARP1 has roles in the DNA damage response but also in the restart of stalled replication forks. We found that a hypomorphic allele of the C. elegans SMC1 orthologue, him-1(e879), genetically interacted with mutations in the orthologues of PAR metabolism genes resulting in a reduced brood size and somatic cell defects. We then demonstrated that this interaction is conserved in human cells by showing that PARP inhibitors reduce the viability of cultured human cells depleted for cohesin components. This work demonstrates that large-scale genetic interaction screening in yeast can identify clinically relevant genetic interactions and suggests that PARP inhibitors, which are currently undergoing clinical trials as a treatment of homologous recombination-deficient cancers, may be effective in treating cancers that harbor cohesin mutations.


Vyšlo v časopise: Synthetic Lethality of Cohesins with PARPs and Replication Fork Mediators. PLoS Genet 8(3): e32767. doi:10.1371/journal.pgen.1002574
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002574

Souhrn

Synthetic lethality has been proposed as a way to leverage the genetic differences found in tumor cells to affect their selective killing. Cohesins, which tether sister chromatids together until anaphase onset, are mutated in a variety of tumor types. The elucidation of synthetic lethal interactions with cohesin mutants therefore identifies potential therapeutic targets. We used a cross-species approach to identify robust negative genetic interactions with cohesin mutants. Utilizing essential and non-essential mutant synthetic genetic arrays in Saccharomyces cerevisiae, we screened genome-wide for genetic interactions with hypomorphic mutations in cohesin genes. A somatic cell proliferation assay in Caenorhabditis elegans demonstrated that the majority of interactions were conserved. Analysis of the interactions found that cohesin mutants require the function of genes that mediate replication fork progression. Conservation of these interactions between replication fork mediators and cohesin in both yeast and C. elegans prompted us to test whether other replication fork mediators not found in the yeast were required for viability in cohesin mutants. PARP1 has roles in the DNA damage response but also in the restart of stalled replication forks. We found that a hypomorphic allele of the C. elegans SMC1 orthologue, him-1(e879), genetically interacted with mutations in the orthologues of PAR metabolism genes resulting in a reduced brood size and somatic cell defects. We then demonstrated that this interaction is conserved in human cells by showing that PARP inhibitors reduce the viability of cultured human cells depleted for cohesin components. This work demonstrates that large-scale genetic interaction screening in yeast can identify clinically relevant genetic interactions and suggests that PARP inhibitors, which are currently undergoing clinical trials as a treatment of homologous recombination-deficient cancers, may be effective in treating cancers that harbor cohesin mutations.


Zdroje

1. XuHYanMPatraJNatrajanRYanY 2011 Enhanced RAD21 cohesin expression confers poor prognosis and resistance to chemotherapy in high grade luminal, basal and HER2 breast cancers. Breast Cancer Res 13 1 R9

2. BarberTDMcManusKYuenKWReisMParmigianiG 2008 Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A 105 9 3443 3448

3. SolomonDAKimTDiaz-MartinezLAFairJElkahlounAG 2011 Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333 6045 1039 1043

4. OikawaKOhbayashiTKiyonoTNishiHIsakaK 2004 Expression of a novel human gene, human wings apart-like (hWAPL), is associated with cervical carcinogenesis and tumor progression. Cancer Res 64 10 3545 3549

5. GhiselliGIozzoRV 2000 Overexpression of bamacan/SMC3 causes transformation. J Biol Chem 275 27 20235 20238

6. ZhangNGeGMeyerRSethiSBasuD 2008 Overexpression of separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci U S A 105 35 13033 13038

7. HagemannCWeigelinBSchommerSSchulzeMAl-JomahN 2011 The cohesin-interacting protein, precocious dissociation of sisters 5A/sister chromatid cohesion protein 112, is up-regulated in human astrocytic tumors. Int J Mol Med 27 1 39 51

8. SheltzerJMBlankHMPfauSJTangeYGeorgeBM 2011 Aneuploidy drives genomic instability in yeast. Science 333 6045 1026 1030

9. MichaelisCCioskRNasmythK 1997 Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids. Cell 91 1 35 45

10. UhlmannFLottspeichFNasmythK 1999 Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400 6739 37 42

11. UhlmannFWernicDPoupartMAKooninEVNasmythK 2000 Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103 3 375 386

12. NasmythKHaeringCH 2009 Cohesin: Its roles and mechanisms. Ann Rev Genet 43 525 558

13. HartwellLHSzankasiPRobertsCJMurrayAWFriendSH 1997 Integrating genetic approaches into the discovery of anticancer drugs. Science 278 1064 8

14. McManusKBarrettINouhiYHieterP 2009 Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. PNAS 106 3276 81

15. BryantHESchultzNThomasHDParkerKMFlowerD 2005 Specific killing of BRCA2-deficient tumors with inhibitors of poly(ADP-ribose) polymerase. Nature 434 7035 913 917

16. FarmerHMcCabeNLordCJTuttANJohnsonDA 2005 Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434 7035 917 21

17. AudehMWCarmichaelJPensonRTFriedlanderMPowellB 2010 Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: A proof-of-concept trial. Lancet 376 9737 245 251

18. O'ShaughnessyJOsborneCPippenJEYoffeMPattD 2011 Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364 3 205 214

19. KhanOAGoreMLoriganPStoneJGreystokeA 2011 A phase I study of the safety and tolerability of olaparib (AZD2281, KU0059436) and dacarbazine in patients with advanced solid tumors. Br J Cancer 104 5 750 755

20. TuttARobsonMGarberJEDomchekSMAudehMW 2010 Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: A proof-of-concept trial. Lancet 376 9737 235 244

21. CostanzoMBaryshnikovaABellayJKimYSpearED 2010 The genetic landscape of a cell. Science 327 5964 425 431

22. TongAHEvangelistaMParsonsABXuHBaderGD 2001 Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294 2364 8

23. VogelsteinBKinzlerK 2004 Cancer genes and the pathways they control. Nat Med 10 789 799

24. CollinsSRMillerKMMaasNLRoguevAFillinghamJ 2007 Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446 7137 806 10

25. BoultonSJMartinJSPolanowskaJHillDEGartnerA 2004 BRCA1/BARD1 orthologs required for DNA repair in Caenorhabditis elegans. Curr Biol 14 1 33 39

26. MartinJSWinkelmannNPetalcorinMIMcIlwraithMJBoultonSJ 2005 RAD-51-dependent and -independent roles of a Caenorhabditis elegans BRCA2-related protein during DNA double-strand break repair. Mol Cell Biol 25 8 3127 3139

27. DerryWBPutzkeAPRothmanJH 2001 Caenorhabditis elegans p53: Role in apoptosis, meiosis, and stress resistance. Science 294 5542 591 595

28. GagnonSNHengartnerMODesnoyersS 2002 The genes pme-1 and pme-2 encode two poly(ADP-ribose) polymerases in Caenorhabditis elegans. Biochem J 368 Pt 1 263 271

29. KirienkoNVManiKFayDS 2010 Cancer models in Caenorhabditis elegans. Dev Dyn 239 5 1413 1448

30. McLellanJO'NeilNTarailoSStoepelJBryanJ 2009 Synthetic lethal genetic interactions that decrease somatic cell proliferation in Caenorhabditis elegans identify the alternative RFC CTF18 as a candidate cancer drug target. Mol Biol Cell 20 24 5306 5313

31. WinzelerEAShoemakerDDAstromoffALiangHAndersonK 1999 Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285 5429 901 906

32. LiZVizeacoumarFJBahrSLiJWarringerJ 2011 Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat Biotechnol 29 4 361 367

33. BreslowDKCameronDMCollinsSRSchuldinerMStewart-OrnsteinJ 2008 A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5 8 711 718

34. SulstonJEHorvitzHR 1977 Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology 56 1 110 56

35. StirlingPCBloomMSSolanki-PatilTSmithSSipahimalaniP 2011 The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7 e1002057 doi:10.1371/journal.pgen.1002057

36. TerretMESherwoodRRahmanSQinJJallepalliPV 2009 Cohesin acetylation speeds the replication fork. Nature 462 7270 231 234

37. KuengSHegemannBPetersBHLippJJSchleifferA 2006 Wapl controls the dynamic association of cohesin with chromatin. Cell 127 5 955 967

38. SutaniTKawaguchiTKannoRItohTShirahigeK 2009 Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr Biol 19 6 492 497

39. SkibbensRV 2004 Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics 166 1 33 42

40. TanakaHKatouYYaguraMSaitohKItohT 2009 Ctf4 coordinates the progression of helicase and DNA polymerase alpha. Genes Cells 14 7 807 820

41. BandoMKatouYKomataMTanakaHItohT 2009 Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates with DNA replication forks. J Biol Chem 284 49 34355 34365

42. KomataMBandoMArakiHShirahigeK 2009 The direct binding of Mrc1, a checkpoint mediator, to Mcm6, a replication helicase, is essential for the replication checkpoint against methyl methanesulfonate-induced stress. Mol Cell Biol 29 18 5008 5019

43. GartnerAMacQueenAJVilleneuveAM 2004 Methods for analyzing checkpoint responses in Caenorhabditis elegans. Methods Mol Biol 280 257 274

44. StirlingPCChanYAMinakerSWAristizabalMJBarrettI 2012 R-loop mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev., Epub Jan. 15, 2012

45. BryantHEPetermannESchultzNJemthASLosevaO 2009 PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28 17 2601 2615

46. St-LaurentJFGagnonSNDequenFHardyIDesnoyersS 2007 Altered DNA damage response in Caenorhabditis elegans with impaired poly(ADP-ribose) glycohydrolases genes expression. DNA Repair (Amst) 6 3 329 343

47. GravelCStergiouLGagnonSNDesnoyersS 2004 The C. elegans gene pme-5: Molecular cloning and role in the DNA-damage response of a tankyrase orthologue. DNA Repair (Amst) 3 2 171 182

48. BrattainMGFineWDKhaledFMThompson BrattainDE 1981 Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res 41 1751 1756

49. LiJHZhangJ 2001 PARP inhibitors. IDrugs 4 7 804 812

50. TentoriLLeonettiCScarsellaMMuziAMazzonE 2006 Inhibition of poly(ADP-ribose) polymerase prevents irinotecan-induced intestinal damage and enhances irinotecan/temozolomide efficacy against colon carcinoma. FASEB J 20 10 1709 1711

51. TakahashiMKoiMBalaguerFBolandCRGoelA 2011 MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor. J Biol Chem 286 14 12157 12165

52. BeckouetFHuBRoigMBSutaniTKomataM 2010 An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion. Mol Cell 39 5 689 699

53. RowlandBDRoigMBNishinoTKurzeAUluocakP 2009 Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol Cell 33 6 763 74

54. Rolef Ben-ShaharTHeegerSLehaneCEastPFlynnH 2008 Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321 5888 563 566

55. MayerMLPotIChangMXuHAneliunasV 2004 Identification of protein complexes required for efficient sister chromatid cohesion. Mol Biol Cell 15 4 1736 1745

56. WalterJNewportJW 1997 Regulation of replicon size in xenopus egg extracts. Science 275 5302 993 995

57. BlumenthalABKriegsteinHJHognessDS 1974 The units of DNA replication in drosophila melanogaster chromosomes. Cold Spring Harb Symp Quant Biol 38 205 223

58. LalorayaSGuacciVKoshlandD 2000 Chromosomal addresses of the cohesin component Mcd1p. J Cell Biol 151 5 1047 1056

59. ParelhoVHadjurSSpivakovMLeleuMSauerS 2008 Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132 3 422 433

60. WendtKSPetersJM 2009 How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res 17 2 201 214

61. WendtKSYoshidaKItohTBandoMKochB 2008 Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451 7180 796 801

62. KimSTXuBKastanMB 2002 Involvement of the cohesin protein, Smc1, in atm-dependent and independent responses to DNA damage. Genes Dev 16 5 560 570

63. HelledayT 2011 The underlying mechanism for the PARP and BRCA synthetic lethality: Clearing up the misunderstandings. Mol Oncol 5 4 387 393

64. SjogrenCNasmythK 2001 Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol 11 12 991 995

65. Ben-AroyaSCoombesCKwokTO'DonnellKABoekeJD 2008 Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol Cell 30 248 58

66. Ben-AroyaSPanXBoekeJDHieterP 2010 Making temperature-sensitive mutants. Methods Enzymol 470 181 204

67. TongAHLesageGBaderGDDingHXuH 2004 Global mapping of the yeast genetic interaction network. Science 303 5659 808 13

68. R Development Core Team: R Foundation for Statistical Computing. 2008 R: A language and environment for statistical computing.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#