#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus


The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system.


Vyšlo v časopise: Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus. PLoS Genet 8(3): e32767. doi:10.1371/journal.pgen.1002558
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002558

Souhrn

The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system.


Zdroje

1. SarpalASKapurGSMukherjeeSTiwariAK 2001 PONA analyses of cracked gasoline by 1H NMR spectroscopy. Part II. Fuel 80 521 528 doi:10.1016/S0016-2361(00)00123-X

2. MurahashiS 1938 \Über die riechstoffe des matsutake (Armillaria Matsutake Ito et Imai Agaricaceae). Sci Pap Inst Phys Chem Res(Tokyo) 34 155 172

3. CombetEHendersonJEastwoodDCBurtonKS 2006 Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47 317 326 doi:10.1007/s10267-006-0318-4

4. StrobelGAKnightonBKluckKRenYLivinghouseT 2008 The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154 3319 3328 doi:10.1099/mic.0.2008/022186-0

5. GriffinMASpakowiczDJGianoulisTAStrobelSA 2010 Volatile organic compound production by organisms in the Ascocoryne genus and a reevaluation of myco-diesel production by NRRL 50072. Microbiology mic.0.041327-0 doi:10.1099/mic.0.041327-0

6. StrobelGTomsheckAGearyBSpakowiczDStrobelS 2010 Endophyte Strain NRRL - 50072 producing volatile organics is a species of Ascocoryne. Mycology: An International Journal on Fungal Biology 1 187 doi:10.1080/21501203.2010.510122

7. StrobelGAKnightonBKluckKRenYLivinghouseT 2010 The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 156 3830 3833 doi:10.1099/mic.0.30824-0

8. FortmanJLChhabraSMukhopadhyayAChouHLeeTS 2008 Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26 375 381 doi:10.1016/j.tibtech.2008.03.008

9. BellerHRGohE-BKeaslingJD 2010 Genes Involved in Long-Chain Alkene Biosynthesis in Micrococcus luteus. Appl Environ Microbiol 76 1212 1223 doi:10.1128/AEM.02312-09

10. SukovichDJSeffernickJLRichmanJEHuntKAGralnickJA 2010 Structure, function, and insights into the biosynthesis of a head-to-head hydrocarbon in Shewanella oneidensis strain MR-1. Appl Environ Microbiol 76 3842 3849 doi:10.1128/AEM.00433-10

11. SchirmerARudeMALiXPopovaEdel CardayreSB 2010 Microbial Biosynthesis of Alkanes. Science 329 559 562 doi:10.1126/science.1187936

12. RudeMABaronTSBrubakerSAlibhaiMDel CardayreSB 2011 Terminal Olefin (1-Alkene) Biosynthesis by a Novel P450 Fatty Acid Decarboxylase from Jeotgalicoccus Species. Appl Environ Microbiol 77 1718 1727 doi:10.1128/AEM.02580-10

13. TresslRBahriDEngelKH 1981 Lipid oxidation in fruits and vegetables. p. Available: 10.1021/bk-1981-0170.ch016

14. TresslRBahriDEngelKH 1982 Formation of eight-carbon and ten-carbon components in mushrooms (Agaricus campestris). Journal of Agricultural and Food Chemistry 30 89 93

15. WurzenbergerMGroschW 1984 The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora). Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 794 25 30

16. WurzenbergerMGroschW 1984 Stereochemistry of the cleavage of the 10-hydroperoxide isomer of linoleic acid to 1-octen-3-ol by a hydroperoxide lyase from mushrooms (psalliota bispora). Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 795 163 165 doi:10.1016/0005-2760(84)90117-6

17. BrodhunFSchneiderSGöbelCHornungEFeussnerI 2010 PpoC from Aspergillus nidulans is a fusion protein with only one active haem. Biochem J 425 553 565 doi:10.1042/BJ20091096

18. AskenaziMDriggersEMHoltzmanDANormanTCIversonS 2003 Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotech 21 150 156 doi:10.1038/nbt781

19. BradleyPHBrauerMJRabinowitzJDTroyanskayaOG 2009 Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae. PLoS Comput Biol 5 e1000270 doi:10.1371/journal.pcbi.1000270

20. RedestigHCostaIG 2011 Detection and interpretation of metabolite–transcript coresponses using combined profiling data. Bioinformatics 27 i357 i365 doi:10.1093/bioinformatics/btr231

21. HiraiMYYanoMGoodenoweDBKanayaSKimuraT 2004 Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 101 10205 10210 doi:10.1073/pnas.0403218101

22. HancockTTakigawaIMamitsukaH 2010 Mining metabolic pathways through gene expression. Bioinformatics 26 2128 2135 doi:10.1093/bioinformatics/btq344

23. SaitoNOhashiYSogaTTomitaM 2010 Unveiling cellular biochemical reactions via metabolomics-driven approaches. Curr Opin Microbiol 13 358 362 doi:10.1016/j.mib.2010.04.006

24. MarguliesMEgholmMAltmanWEAttiyaSBaderJS 2005 Genome sequencing in microfabricated high-density picolitre reactors. Nature 437 376 380 doi:10.1038/nature03959

25. FitzpatrickDLogueMStajichJButlerG 2006 A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolutionary Biology 6 99 doi:10.1186/1471-2148-6-99

26. ParraGBradnamKKorfI 2007 CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23 1061 1067 doi:10.1093/bioinformatics/btm071

27. BensonDAKarsch-MizrachiILipmanDJOstellJWheelerDL 2007 GenBank. Nucleic Acids Research 36 D25 D30 doi:10.1093/nar/gkm929

28. NagalakshmiUWangZWaernKShouCRahaD 2008 The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science 320 1344 1349 doi:10.1126/science.1158441

29. MortazaviAWilliamsBAMcCueKSchaefferLWoldB 2008 Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth 5 621 628 doi:10.1038/nmeth.1226

30. Supelco Bulletin 869A n.d. Solid Phase Microextraction: Solventless Sample Preparation for Monitoring Flavor Compounds by Capillary Gas Chromatography. Available: www.sigmaaldrich.com/etc/medialib/docs/Supelco//4524.pdf

31. OzsolakFKapranovPFoissacSKimSWFishilevichE 2010 Comprehensive Polyadenylation Site Maps in Yeast and Human Reveal Pervasive Alternative Polyadenylation. Cell 143 1018 1029 doi:10.1016/j.cell.2010.11.020

32. BumgarnerSLDowellRDGrisafiPGiffordDKFinkGR 2009 Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proceedings of the National Academy of Sciences 106 18321 18326 doi:10.1073/pnas.0909641106

33. GersteinMBLuZJVan NostrandELChengCArshinoffBI 2010 Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project. Science 330 1775 1787 doi:10.1126/science.1196914

34. CantarelBLCoutinhoPMRancurelCBernardTLombardV 2009 The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37 D233 238 doi:10.1093/nar/gkn663

35. SaloheimoMPaloheimoMHakolaSPereJSwansonB 2002 Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. European Journal of Biochemistry 269 4202 4211 doi:10.1046/j.1432-1033.2002.03095.x

36. ChenX-aiIshidaNTodakaNNakamuraRMaruyamaJ-ichi 2010 Promotion of Efficient Saccharification of Crystalline Cellulose by Aspergillus fumigatus Swo1. Appl Environ Microbiol 76 2556 2561 doi:10.1128/AEM.02499-09

37. FischerCRKlein-MarcuschamerDStephanopoulosG 2008 Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering 10 295 304 doi:10.1016/j.ymben.2008.06.009

38. JamesEGSarahECChristina CuomoLJJenniferRWSerafim BatzoglouSI 2005 Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438 1105 1115

39. MartinezDBerkaRMHenrissatBSaloheimoMArvasM 2008 Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature biotechnology 26 553 560

40. CameraSLBalaguéCGöbelCGeoffroyPLegrandM 2009 The Arabidopsis Patatin-Like Protein 2 (PLP2) Plays an Essential Role in Cell Death Execution and Differentially Affects Biosynthesis of Oxylipins and Resistance to Pathogens. MPMI 22 469 481 doi:10.1094/MPMI-22-4-0469

41. Del SorboGSchoonbeekHDe WaardMA 2000 Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30 1 15

42. YadavGGokhaleRSMohantyD 2009 Towards Prediction of Metabolic Products of Polyketide Synthases: An In Silico Analysis. PLoS Comput Biol 5 e1000351 doi:10.1371/journal.pcbi.1000351

43. BouhiredSWeberMKempf-SontagAKellerNPHoffmeisterD 2007 Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genetics and Biology 44 1134 1145 doi:10.1016/j.fgb.2006.12.010

44. YadavGGokhaleRSMohantyD 2003 SEARCHPKS: a program for detection and analysis of polyketide synthase domains. Nucleic Acids Research 31 3654 3658 doi:10.1093/nar/gkg607

45. PielJ 2010 Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 27 996 1047 doi:10.1039/b816430b

46. KooninEVWolfYI 2008 Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Research 36 6688 6719 doi:10.1093/nar/gkn668

47. PellegriniMMarcotteEMThompsonMJEisenbergDYeatesTO 1999 Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc Natl Acad Sci U S A 96 4285 4288

48. KorbelJOJensenLJvon MeringCBorkP 2004 Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nat Biotech 22 911 917 doi:10.1038/nbt988

49. MarcotteEMPellegriniMNgH-LRiceDWYeatesTO 1999 Detecting Protein Function and Protein-Protein Interactions from Genome Sequences. Science 285 751 753 doi:10.1126/science.285.5428.751

50. OverbeekRFonsteinMD'SouzaMPuschGDMaltsevN 1999 The use of gene clusters to infer functional coupling. Proceedings of the National Academy of Sciences 96 2896 2901 doi:10.1073/pnas.96.6.2896

51. KumarCGEvertsRELoorJJLewinHA 2010 Functional annotation of novel lineage-specific genes using co-expression and promoter analysis. BMC Genomics 11 161 doi:10.1186/1471-2164-11-161

52. StephanopoulosG 2007 Challenges in Engineering Microbes for Biofuels Production. Science 315 801 804 doi:10.1126/science.1139612

53. LeeSKChouHHamTSLeeTSKeaslingJD 2008 Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Current Opinion in Biotechnology 19 556 563 doi:10.1016/j.copbio.2008.10.014

54. AndreouABrodhunFFeussnerI 2009 Biosynthesis of oxylipins in non-mammals. Progress in Lipid Research 48 148 170 doi:10.1016/j.plipres.2009.02.002

55. GrechkinANHambergM 2004 The “heterolytic hydroperoxide lyase” is an isomerase producing a short-lived fatty acid hemiacetal. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1636 47 58 doi:10.1016/j.bbalip.2003.12.003

56. BerdyJ 2005 Bioactive Microbial Metabolites. J Antibiot 58 1 26

57. DoddsDRGrossRA 2007 Chemicals from Biomass. Science 318 1250 1251 doi:10.1126/science.1146356

58. CroesDCoucheFWodakSJvan HeldenJ 2005 Metabolic PathFinding: inferring relevant pathways in biochemical networks. Nucleic Acids Research 33 W326 W330 doi:10.1093/nar/gki437

59. GaoJEllisLBMWackettLP 2010 The University of Minnesota Biocatalysis/Biodegradation Database: improving public access. Nucleic Acids Res 38 D488 D491 doi:10.1093/nar/gkp771

60. MoriyaYShigemizuDHattoriMTokimatsuTKoteraM 2010 PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res 38 W138 143 doi:10.1093/nar/gkq318

61. RahmanSAAdvaniPSchunkRSchraderRSchomburgD 2005 Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics 21 1189 1193 doi:10.1093/bioinformatics/bti116

62. CaspiRFoersterHFulcherCAKaipaPKrummenackerM 2008 The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 36 D623 D631 doi:10.1093/nar/gkm900

63. WinkM 1988 Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theoret Appl Genetics 75 225 233 doi:10.1007/BF00303957

64. WielochW 2006 Chromosome visualisation in filamentous fungi. J Microbiol Methods 67 1 8 doi:10.1016/j.mimet.2006.05.022

65. GriffinMASpakowiczDJGianoulisTAStrobelSA 2010 Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156 3814

66. AltschulSFGishWMillerWMyersEWLipmanDJ 1990 Basic local alignment search tool. J Mol Biol 215 403 410 doi:10.1016/S0022-2836(05)80360-2

67. CantarelBLCoutinhoPMRancurelCBernardTLombardV 2009 The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37 D233 238 doi:10.1093/nar/gkn663

68. EddySR 2009 A new generation of homology search tools based on probabilistic inference. Genome Inform 23 205 211

69. AlamIHubbardSOliverSRattrayM 2007 A kingdom-specific protein domain HMM library for improved annotation of fungal genomes. BMC Genomics 8 97 doi:10.1186/1471-2164-8-97

70. FinnRDTateJMistryJCoggillPCSammutSJ 2007 The Pfam protein families database. Nucleic Acids Research 36 D281 D288 doi:10.1093/nar/gkm960

71. KanehisaMArakiMGotoSHattoriMHirakawaM 2008 KEGG for linking genomes to life and the environment. Nucleic Acids Res 36 D480 484 doi:10.1093/nar/gkm882

72. MoriyaYItohMOkudaSYoshizawaACKanehisaM 2007 KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35 W182 185 doi:10.1093/nar/gkm321

73. AshburnerMBallCABlakeJABotsteinDButlerH 2000 Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25 25 29 doi:10.1038/75556

74. ArnaudMBChibucosMCCostanzoMCCrabtreeJInglisDO 2010 The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community. Nucleic Acids Res 38 D420 D427 doi:10.1093/nar/gkp751

75. LangmeadBTrapnellCPopMSalzbergSL 2009 Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10 R25 doi:10.1186/gb-2009-10-3-r25

76. HabeggerLSbonerAGianoulisTARozowskyJAgarwalA 2010 RSEQtools: A modular framework to analyze RNA-Seq data using compact, anonymized data summaries. Bioinformatics. Available: http://bioinformatics.oxfordjournals.org/content/early/2010/12/05/bioinformatics.btq643.abstract

77. KentWJ 2002 BLAT–the BLAST-like alignment tool. Genome Res 12 656 664 doi:10.1101/gr.229202

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#