Coevolution within and between Regulatory Loci Can Preserve Promoter Function Despite Evolutionary Rate Acceleration
Phenotypes that appear to be conserved could be maintained not only by strong purifying selection on the underlying genetic systems, but also by stabilizing selection acting via compensatory mutations with balanced effects. Such coevolution has been invoked to explain experimental results, but has rarely been the focus of study. Conserved expression driven by the unc-47 promoters of Caenorhabditis elegans and C. briggsae persists despite divergence within a cis-regulatory element and between this element and the trans-regulatory environment. Compensatory changes in cis and trans are revealed when these promoters are used to drive expression in the other species. Functional changes in the C. briggsae promoter, which has experienced accelerated sequence evolution, did not lead to alteration of gene expression in its endogenous environment. Coevolution among promoter elements suggests that complex epistatic interactions within cis-regulatory elements may facilitate their divergence. Our results offer a detailed picture of regulatory evolution in which subtle, lineage-specific, and compensatory modifications of interacting cis and trans regulators together maintain conserved gene expression patterns.
Vyšlo v časopise:
Coevolution within and between Regulatory Loci Can Preserve Promoter Function Despite Evolutionary Rate Acceleration. PLoS Genet 8(9): e32767. doi:10.1371/journal.pgen.1002961
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002961
Souhrn
Phenotypes that appear to be conserved could be maintained not only by strong purifying selection on the underlying genetic systems, but also by stabilizing selection acting via compensatory mutations with balanced effects. Such coevolution has been invoked to explain experimental results, but has rarely been the focus of study. Conserved expression driven by the unc-47 promoters of Caenorhabditis elegans and C. briggsae persists despite divergence within a cis-regulatory element and between this element and the trans-regulatory environment. Compensatory changes in cis and trans are revealed when these promoters are used to drive expression in the other species. Functional changes in the C. briggsae promoter, which has experienced accelerated sequence evolution, did not lead to alteration of gene expression in its endogenous environment. Coevolution among promoter elements suggests that complex epistatic interactions within cis-regulatory elements may facilitate their divergence. Our results offer a detailed picture of regulatory evolution in which subtle, lineage-specific, and compensatory modifications of interacting cis and trans regulators together maintain conserved gene expression patterns.
Zdroje
1. HareEE, PetersonBK, IyerVN, MeierR, EisenMB (2008) Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet 4: e1000106 doi:10.1371/journal.pgen.1000106.
2. SwansonCI, EvansNC, BaroloS (2010) Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Developmental Cell 18: 359–370.
3. LudwigMZ, PatelNH, KreitmanM (1998) Functional analysis of eve stripe 2 enhancer evolution in Drosophila: Rules governing conservation and change. Development 125: 949–958.
4. DonigerSW, FayJC (2007) Frequent gain and loss of functional transcription factor binding sites. PLoS Comput Biol 3: e99 doi:10.1371/journal.pcbi.0030099.
5. HeBZ, HollowayAK, MaerklSJ, KreitmanM (2011) Does positive selection drive transcription factor binding site turnover? A test with Drosophila cis-regulatory modules. PLoS Genet 7: e1002053 doi:10.1371/journal.pgen.1002053.
6. ShawPJ, WrattenNS, McGregorAP, DoverGA (2002) Coevolution in bicoid-dependent promoters and the inception of regulatory incompatibilities among species of higher Diptera. Evol Dev 4: 265–277.
7. BakerCR, TuchBB, JohnsonAD (2011) Extensive DNA-binding specificity divergence of a conserved transcription regulator. Proc Natl Acad Sci U S A 108: 7493–7498.
8. LandryCR, WittkoppPJ, TaubesCH, RanzJM, ClarkAG, et al. (2005) Compensatory cis-trans evolution and the dysregulation of gene expression in interspecific hybrids of Drosophila. Genetics 171: 1813–1822.
9. TsankovAM, ThompsonDA, SochaA, RegevA, RandoOJ (2010) The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8: e1000414 doi:10.1371/journal.pbio.1000414.
10. HittingerCT, GoncalvesP, SampaioJP, DoverJ, JohnstonM, et al. (2010) Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature 464: 54–58.
11. GerkeJ, LorenzK, CohenB (2009) Genetic interactions between transcription factors cause natural variation in yeast. Science 323: 498–501.
12. GaschAP, MosesAM, ChiangDY, FraserHB, BerardiniM, et al. (2004) Conservation and evolution of cis-regulatory systems in ascomycete fungi. PLoS Biol 2: e398 doi:10.1371/journal.pbio.0020398.
13. HittingerCT, CarrollSB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449: 677–681.
14. TuchBB, GalgoczyDJ, HerndayAD, LiH, JohnsonAD (2008) The evolution of combinatorial gene regulation in fungi. PLoS Biol 6: e38 doi:10.1371/journal.pbio.0060038.
15. WangXD, ChamberlinHM (2004) Evolutionary innovation of the excretory system in Caenorhabditis elegans. Nat Genet 36: 231–232.
16. SungH, WangT, WangD, HuangY, WuJ, et al. (2009) Roles of trans and cis variation in yeast intraspecies evolution of gene expression. Mol Biol Evol 26: 2533–2538.
17. MarcelliniS, SimpsonP (2006) Two or four bristles: Functional evolution of an enhancer of scute in Drosophilidae. PLoS Biol 4: e386 doi:10.1371/journal.pbio.0040386.
18. EmersonJJ, HsiehL, SungH, WangT, HuangC, et al. (2010) Natural selection on cis and trans regulation in yeasts. Genome Res 20: 826–836.
19. GibsonG, Riley-BergerR, HarshmanL, KoppA, VachaS, et al. (2004) Extensive sex-specific nonadditivity of gene expression in Drosophila melanogaster. Genetics 167: 1791–1799.
20. ChanET, QuonGT, ChuaG, BabakT, TrochessetM, et al. (2009) Conservation of core gene expression in vertebrate tissues. Journal of Biology 8: 33–33.
21. AparicioS, MorrisonA, GouldA, GilthorpeJ, ChaudhuriC, et al. (1995) Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc Natl Acad Sci U S A 92: 1684–1688.
22. BarriereA, GordonKL, RuvinskyI (2011) Distinct functional constraints partition sequence conservation in a cis-regulatory element. PLoS Genet 7: e1002095 doi:10.1371/journal.pgen.1002095.
23. DoverGA, FlavellRB (1984) Molecular coevolution: DNA divergence and the maintenance of function. Cell 38: 622–623.
24. TrueJR, HaagES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3: 109–119.
25. TsongAE, TuchBB, LiH, JohnsonAD (2006) Evolution of alternative transcriptional circuits with identical logic. Nature 443: 415–420.
26. ChangY, LiuFR, YuN, SungH, YangP, et al. (2008) Roles of cis- and trans-changes in the regulatory evolution of genes in the gluconeogenic pathway in yeast. Mol Biol Evol 25: 1863–1875.
27. TiroshI, ReikhavS, LevyAA, BarkaiN (2009) A yeast hybrid provides insight into the evolution of gene expression regulation. Science 324: 659–662.
28. WittkoppPJ, HaerumBK, ClarkAG (2008) Regulatory changes underlying expression differences within and between Drosophila species. Nat Genet 40: 346–350.
29. McManusCJ, CoolonJD, DuffMO, Eipper-MainsJ, GraveleyBR, et al. (2010) Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res 20: 816–825.
30. GrazeRM, McIntyreLM, MainBJ, WayneML, NuzhdinSV (2009) Regulatory divergence in Drosophila melanogaster and D. simulans, a genomewide analysis of allele-specific expression. Genetics 183: 547–561.
31. Ortiz-BarrientosD, CountermanBA, NoorMAF (2007) Gene expression divergence and the origin of hybrid dysfunctions. Genetica 129: 71–81.
32. SkellyDA, RonaldJ, AkeyJM (2009) Inherited variation in gene expression. Annual Review of Genomics and Human Genetics 10: 313–332.
33. StrangerBE, ForrestMS, ClarkAG, MinichielloMJ, DeutschS, et al. (2005) Genome-wide associations of gene expression variation in humans. PLoS Genet 1: e78 doi:10.1371/journal.pgen.0010078.
34. TishkoffSA, ReedFA, RanciaroA, VoightBF, BabbittCC, et al. (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39: 31–40.
35. BeallCM, CavalleriGL, DengL, ElstonRC, GaoY, et al. (2010) Natural selection on EPAS1 (HIF2 alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A 107: 11459–11464.
36. GordonKL, RuvinskyI (2012) Tempo and mode in evolution of transcriptional regulation. PLoS Genet 8: e1002432 doi:10.1371/journal.pgen.1002432.
37. GilleardJS, BarryJD, JohnstoneIL (1997) Cis regulatory requirements for hypodermal cell-specific expression of the Caenorhabditis elegans cuticle collagen gene dpy-7. Mol Cell Biol 17: 2301–2311.
38. KennedyBP, AamodtEJ, AllenFL, ChungMA, HeschlMFP, et al. (1993) The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Mol Biol 229: 890–908.
39. KirouacM, SternbergPW (2003) Cis-regulatory control of three cell fate-specific genes in vulval organogenesis of Caenorhabditis elegans and C. briggsae. Dev Biol 257: 85–103.
40. RomanoLA, WrayGA (2003) Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation. Development 130: 4187–4199.
41. WenickAS, HobertO (2004) Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specific gene battery in C. elegans. Developmental Cell 6: 757–770.
42. WangXD, ChamberlinHM (2002) Multiple regulatory changes contribute to the evolution of the Caenorhabditis lin-48 ovo gene. Genes Dev 16: 2345–2349.
43. WittkoppPJ, VaccaroK, CarrollSB (2002) Evolution of yellow gene regulation and pigmentation in Drosophila. Current Biology 12: 1547–1556.
44. KiontkeK, GavinNP, RaynesY, RoehrigC, PianoF, et al. (2004) Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc Natl Acad Sci U S A 101: 9003–9008.
45. RuvinskyI, RuvkunG (2003) Functional tests of enhancer conservation between distantly related species. Development 130: 5133–5142.
46. McintireSL, JorgensenE, KaplanJ, HorvitzHR (1993) The GABAergic nervous-system of Caenorhabditis elegans. Nature 364: 337–341.
47. GuastellaJ, JohnsonCD, StrettonAOW (1991) GABA-immunoreactive neurons in the nematode Ascaris. J Comp Neurol 307: 584–597.
48. McIntireSL, ReimerRJ, SchuskeK, EdwardsRH, JorgensenEM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389: 870–876.
49. ZhaoZ, BoyleTJ, BaoZ, MurrayJI, MericleB, et al. (2008) Comparative analysis of embryonic cell lineage between Caenorhabditis briggsae and Caenorhabditis elegans. Dev Biol 314: 93–99.
50. Frokjaer-JensenC, DavisMW, HopkinsCE, NewmanBJ, ThummelJM, et al. (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40: 1375–1383.
51. WangX, SommerRJ (2011) Antagonism of LIN-17/Frizzled and LIN-18/Ryk in nematode vulva induction reveals evolutionary alterations in core developmental pathways. PLoS Biol 9: e1001110 doi:10.1371/journal.pbio.1001110.
52. SwansonCI, SchwimmerDB, BaroloS (2011) Rapid evolutionary rewiring of a structurally constrained eye enhancer. Current Biology 21: 1186–1196.
53. MaheshwariS, BarbashDA (2012) Cis-by-trans regulatory divergence causes the asymmetric lethal effects of an ancestral hybrid incompatibility gene. PLoS Genet 8: e1002597 doi:10.1371/journal.pgen.1002597.
54. OrrHA, TurelliM (2001) The evolution of postzygotic isolation: Accumulating Dobzhansky-Muller Incompatibilities. Evolution 55: 1085–1094.
55. BremRB, KruglyakL (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci U S A 102: 1572–1577.
56. RanzJM, NamgyalK, GibsonG, HartlDL (2004) Anomalies in the expression profile of interspecific hybrids of Drosophila melanogaster and Drosophila simulans. Genome Res 14: 373–379.
57. RiesebergLH, WidmerA, ArntzAM, BurkeJM (2003) The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Phil Trans R Soc B 358: 1141–1147.
58. EmersonJJ, LiW (2010) The genetic basis of evolutionary change in gene expression levels. Phil Trans R Soc B 365: 2581–2590.
59. Powell-CoffmanJA, BradfieldCA, WoodWB (1998) Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc Natl Acad Sci U S A 95: 2844–2849.
60. QinH, ZhaiZ, Powell-CoffmanJA (2006) The Caenorhabditis elegans AHR-1 transcription complex controls expression of soluble guanylate cyclase genes in the URX neurons and regulates aggregation behavior. Dev Biol 298: 606–615.
61. HuangX, Powell-CoffmanJA, JinYS (2004) The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans. Development 131: 819–828.
62. QinHT, Powell-CoffmanJA (2004) The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development. Dev Biol 270: 64–75.
63. LusskaA, ShenE, WhitlockJP (1993) Protein-DNA interactions at a dioxin-responsive enhancer. Analysis of 6 bona fide DNA-binding sites for the liganded Ah receptor. J Biol Chem 268: 6575–6580.
64. GroveCA, De MasiF, BarrasaMI, NewburgerDE, AlkemaMJ, et al. (2009) A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 138: 314–327.
65. WalhoutAJM, van der VlietPC, TimmersHTM (1998) Sequences flanking the E-box contribute to cooperative binding by c-Myc/Max heterodimers to adjacent binding sites. Biochimica Et Biophysica Acta 139: 189–201.
66. MauranoMT, WangH, KutyavinT, StamatoyannopoulosJA (2012) Widespread site-dependent buffering of human regulatory polymorphism. PLoS Genet 8: e1002599 doi:10.1371/journal.pgen.1002599.
67. LudwigMZ, BergmanC, PatelNH, KreitmanM (2000) Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403: 564–567.
68. EmeraD, WagnerGP (2012) Transformation of a transposon into a derived prolactin promoter with function during human pregnancy. Proc Natl Acad Sci U S A 109: 11246–11251.
69. KryazhimskiyS, DushoffJ, BazykinGA, PlotkinJB (2011) Prevalence of epistasis in the evolution of influenza A surface proteins. PLoS Genet 7: e1001301 doi:10.1371/journal.pgen.1001301.
70. OrtlundEA, BridghamJT, RedinboMR, ThorntonJW (2007) Crystal structure of an ancient protein: Evolution by conformational epistasis. Science 317: 1544–1548.
71. HaagES (2007) Compensatory vs. pseudocompensatory evolution in molecular and developmental interactions. Genetica 129: 45–55.
72. BullaugheyK (2012) Multidimensional adaptive evolution of a feed forward network and the illusion of compensation. Evolution In press.
73. RockmanMV, HahnMW, SoranzoN, ZimprichF, GoldsteinDB, et al. (2005) Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS Biol 3: e387 doi:10.1371/journal.pbio.0030387.
74. FrankelN, ErezyilmazD, McGregorAP, WangS, PayreF, et al. (2011) Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. Nature 474: 598–603.
75. KuoD, LiconK, BandyopadhyayS, ChuangR, LuoC, et al. (2010) Coevolution within a transcriptional network by compensatory trans and cis mutations. Genome Res 20: 1672–1678.
76. WangXD, GreenbergJF, ChamberlinHM (2004) Evolution of regulatory elements producing a conserved gene expression pattern in Caenorhabditis. Evol Dev 6: 237–245.
77. LynchVJ, TanzerA, WangY, LeungFC, GellersenB, et al. (2008) Adaptive changes in the transcription factor HoxA-11 are essential for the evolution of pregnancy in mammals. Proc Natl Acad Sci U S A 105: 14928–14933.
78. BonnetonF, ShawPJ, FazakerleyC, ShiM, DoverGA (1997) Comparison of bicoid-dependent regulation of hunchback between Musca domestica and Drosophila melanogaster. Mech Dev 66: 143–156.
79. JohnsonNA, PorterAH (2007) Evolution of branched regulatory genetic pathways: Directional selection on pleiotropic loci accelerates Developmental System Drift. Genetica 129: 57–70.
80. LudwigMZ, PalssonA, AlekseevaE, BergmanCM, NathanJ, et al. (2005) Functional evolution of a cis-regulatory module. PLoS Biol 3: e93 doi:10.1371/journal.pbio.0030093.
81. CrockerJ, TamoriY, ErivesA (2008) Evolution acts on enhancer organization to fine-tune gradient threshold readouts. PLoS Biol 6: e263 doi:10.1371/journal.pbio.0060263.
82. ZillOA, ScannellD, TeytelmanL, RineJ (2010) Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly. PLoS Biol 8: e1000550 doi:10.1371/journal.pbio.1000550.
83. XiaoW, PelcherLE, RankGH (1991) Evidence for cis-acting and trans-acting element coevolution of the 2-microns circle genome in Saccharomyces cerevisiae. J Mol Evol 32: 145–152.
84. HershBM, CarrollSB (2005) Direct regulation of knot gene expression by ultrabithorax and the evolution of cis-regulatory elements in Drosophila. Development 132: 1567–1577.
85. TakahasiKR, MatsuoT, Takano-Shimizu-KounoT (2011) Two types of cis-trans compensation in the evolution of transcriptional regulation. Proc Natl Acad Sci U S A 108: 15276–15281.
86. McGregorAP, ShawPJ, HancockJM, BoppD, HedigerM, et al. (2001) Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: Implications for molecular coevolution. Evol Dev 3: 397–407.
87. BullaugheyK (2011) Changes in selective effects over time facilitate turnover of enhancer sequences. Genetics 187: 567–U328.
88. TakahashiH, MitaniY, SatohG, SatohN (1999) Evolutionary alterations of the minimal promoter for notochord-specific brachyury expression in ascidian embryos. Development 126: 3725–3734.
89. Oda-IshiiI, BertrandV, MatsuoI, LemaireP, SaigaH (2005) Making very similar embryos with divergent genomes: Conservation of regulatory mechanisms of Otx between the ascidians Halocynthia roretzi and Ciona intestinalis. Development 132: 1663–1674.
90. RiesebergLH, ArcherMA, WayneRK (1999) Transgressive segregation, adaptation and speciation. Heredity 83: 363–372.
91. BremRB, YvertG, ClintonR, KruglyakL (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296: 752–755.
92. HaertyW, SinghRS (2006) Gene regulation divergence is a major contributor to the evolution of Dobzhansky-Muller Incompatibilities between species of Drosophila. Mol Biol Evol 23: 1707–1714.
93. PhillipsPC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetics 9: 855–867.
94. BloomJD, GongLI, BaltimoreD (2010) Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328: 1272–1275.
95. LunzerM, GoldingGB, DeanAM (2010) Pervasive cryptic epistasis in molecular evolution. PLoS Genet 6: e1001162 doi:10.1371/journal.pgen.1001162.
96. WeinreichDM, DelaneyNF, DePristoMA, HartlDL (2006) Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312: 111–114.
97. BridghamJT, OrtlundEA, ThorntonJW (2009) An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 461: 515–U78.
98. AzevedoRBR, LohausR, SrinivasanS, DangKK, BurchCL (2006) Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440: 87–90.
99. GertzJ, GerkeJP, CohenBA (2010) Epistasis in a quantitative trait captured by a molecular model of transcription factor interactions. Theor Popul Biol 77: 1–5.
100. GerkeJ, LorenzK, RamnarineS, CohenB (2010) Gene-environment interactions at nucleotide resolution. PLoS Genet 6: e1001144 doi:10.1371/journal.pgen.1001144.
101. BremRB, StoreyJD, WhittleJ, KruglyakL (2005) Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436: 701–703.
102. SteinerCC, WeberJN, HoekstraHE (2007) Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol 5: e219 doi:10.1371/journal.pbio.0050219.
103. WohlbachDJ, ThompsonDA, GaschAP, RegevA (2009) From elements to modules: Regulatory evolution in Ascomycota fungi. Curr Opin Genet Dev 19: 571–578.
104. PaixaoT, AzevedoRBR (2010) Redundancy and the evolution of cis-regulatory element multiplicity. PLoS Comput Biol 6: e1000848 doi:10.1371/journal.pcbi.1000848.
105. LiH, JohnsonAD (2010) Evolution of transcription networks—lessons from yeasts. Current Biology 20: R746–R753.
106. RebeizM, JikomesN, KassnerVA, CarrollSB (2011) Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences. Proc Natl Acad Sci U S A 108: 10036–10043.
107. DraghiJA, ParsonsTL, WagnerGP, PlotkinJB (2010) Mutational robustness can facilitate adaptation. Nature 463: 353–355.
108. KimJ (2001) Macro-evolution of the hairy enhancer in Drosophila species. J Exp Zool 291: 175–185.
109. WangRL, StecA, HeyJ, LukensL, DoebleyJ (1999) The limits of selection during maize domestication. Nature 398: 236–239.
110. SellaG, PetrovDA, PrzeworskiM, AndolfattoP (2009) Pervasive natural selection in the Drosophila genome? PLoS Genet 5: e1000495 doi:10.1371/journal.pgen.1000495.
111. PrabhakarS, NoonanJP, PaeaeboS, RubinEM (2006) Accelerated evolution of conserved noncoding sequences in humans. Science 314: 786–786.
112. PollardKS, SalamaSR, KingB, KernAD, DreszerT, et al. (2006) Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2: e168 doi:10.1371/journal.pgen.0020168.
113. Lindblad-TohK, GarberM, ZukO, LinMF, ParkerBJ, et al. (2011) A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478: 476–482.
114. GranatoM, SchnabelH, SchnabelR (1994) pha-1, a selectable marker for gene-transfer in C. elegans. Nucleic Acids Res 22: 1762–1763.
115. Evans TC (2006) Transformation and microinjection. In: WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.108.1, http://www.wormbook.org. Accessed 2012 Aug 14.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 9
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Enrichment of HP1a on Drosophila Chromosome 4 Genes Creates an Alternate Chromatin Structure Critical for Regulation in this Heterochromatic Domain
- Normal DNA Methylation Dynamics in DICER1-Deficient Mouse Embryonic Stem Cells
- The NDR Kinase Scaffold HYM1/MO25 Is Essential for MAK2 MAP Kinase Signaling in
- Functional Variants in and Involved in Activation of the NF-κB Pathway Are Associated with Rheumatoid Arthritis in Japanese