#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

H4K20me1 Contributes to Downregulation of X-Linked Genes for Dosage Compensation


The Caenorhabditis elegans dosage compensation complex (DCC) equalizes X-chromosome gene dosage between XO males and XX hermaphrodites by two-fold repression of X-linked gene expression in hermaphrodites. The DCC localizes to the X chromosomes in hermaphrodites but not in males, and some subunits form a complex homologous to condensin. The mechanism by which the DCC downregulates gene expression remains unclear. Here we show that the DCC controls the methylation state of lysine 20 of histone H4, leading to higher H4K20me1 and lower H4K20me3 levels on the X chromosomes of XX hermaphrodites relative to autosomes. We identify the PR-SET7 ortholog SET-1 and the Suv4-20 ortholog SET-4 as the major histone methyltransferases for monomethylation and di/trimethylation of H4K20, respectively, and provide evidence that X-chromosome enrichment of H4K20me1 involves inhibition of SET-4 activity on the X. RNAi knockdown of set-1 results in synthetic lethality with dosage compensation mutants and upregulation of X-linked gene expression, supporting a model whereby H4K20me1 functions with the condensin-like C. elegans DCC to repress transcription of X-linked genes. H4K20me1 is important for mitotic chromosome condensation in mammals, suggesting that increased H4K20me1 on the X may restrict access of the transcription machinery to X-linked genes via chromatin compaction.


Vyšlo v časopise: H4K20me1 Contributes to Downregulation of X-Linked Genes for Dosage Compensation. PLoS Genet 8(9): e32767. doi:10.1371/journal.pgen.1002933
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002933

Souhrn

The Caenorhabditis elegans dosage compensation complex (DCC) equalizes X-chromosome gene dosage between XO males and XX hermaphrodites by two-fold repression of X-linked gene expression in hermaphrodites. The DCC localizes to the X chromosomes in hermaphrodites but not in males, and some subunits form a complex homologous to condensin. The mechanism by which the DCC downregulates gene expression remains unclear. Here we show that the DCC controls the methylation state of lysine 20 of histone H4, leading to higher H4K20me1 and lower H4K20me3 levels on the X chromosomes of XX hermaphrodites relative to autosomes. We identify the PR-SET7 ortholog SET-1 and the Suv4-20 ortholog SET-4 as the major histone methyltransferases for monomethylation and di/trimethylation of H4K20, respectively, and provide evidence that X-chromosome enrichment of H4K20me1 involves inhibition of SET-4 activity on the X. RNAi knockdown of set-1 results in synthetic lethality with dosage compensation mutants and upregulation of X-linked gene expression, supporting a model whereby H4K20me1 functions with the condensin-like C. elegans DCC to repress transcription of X-linked genes. H4K20me1 is important for mitotic chromosome condensation in mammals, suggesting that increased H4K20me1 on the X may restrict access of the transcription machinery to X-linked genes via chromatin compaction.


Zdroje

1. LeeJT (2011) Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 12: 815–826.

2. StraubT, BeckerPB (2011) Transcription modulation chromosome-wide: universal features and principles of dosage compensation in worms and flies. Curr Opin Genet Dev 21: 147–153.

3. MeyerBJ (2010) Targeting X chromosomes for repression. Curr Opin Genet Dev 20: 179–189.

4. WoodAJ, SeversonAF, MeyerBJ (2010) Condensin and cohesin complexity: the expanding repertoire of functions. Nat Rev Genet 11: 391–404.

5. CsankovszkiG, ColletteK, SpahlK, CareyJ, SnyderM, et al. (2009) Three distinct condensin complexes control C. elegans chromosome dynamics. Curr Biol 19: 9–19.

6. ErcanS, DickLL, LiebJD (2009) The C. elegans dosage compensation complex propagates dynamically and independently of X chromosome sequence. Curr Biol 19: 1777–1787.

7. JansJ, GladdenJM, RalstonEJ, PickleCS, MichelAH, et al. (2009) A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome. Genes Dev 23: 602–618.

8. ChuangPT, LiebJD, MeyerBJ (1996) Sex-specific assembly of a dosage compensation complex on the nematode X chromosome. Science 274: 1736–1739.

9. DavisTL, MeyerBJ (1997) SDC-3 coordinates the assembly of a dosage compensation complex on the nematode X chromosome. Development 124: 1019–1031.

10. LiebJD, CapowskiEE, MeneelyP, MeyerBJ (1996) DPY-26, a link between dosage compensation and meiotic chromosome segregation in the nematode. Science 274: 1732–1736.

11. NonetML, MeyerBJ (1991) Early aspects of Caenorhabditis elegans sex determination and dosage compensation are regulated by a zinc-finger protein. Nature 351: 65–68.

12. YonkerSA, MeyerBJ (2003) Recruitment of C. elegans dosage compensation proteins for gene-specific versus chromosome-wide repression. Development 130: 6519–6532.

13. PferdehirtRR, KruesiWS, MeyerBJ (2011) An MLL/COMPASS subunit functions in the C. elegans dosage compensation complex to target X chromosomes for transcriptional regulation of gene expression. Genes Dev 25: 499–515.

14. ChuangPT, AlbertsonDG, MeyerBJ (1994) DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79: 459–474.

15. LiuT, RechtsteinerA, EgelhoferTA, VielleA, LatorreI, et al. (2011) Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res 21: 227–236.

16. BeckDB, OdaH, ShenSS, ReinbergD (2012) PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev 26: 325–337.

17. FongY, BenderL, WangW, StromeS (2002) Chromatin States of Autosomes and X Chromosomes in the Germ Line of C. elegans. Science 296: 2235–2238.

18. KellyWG, SchanerCE, DernburgAF, LeeMH, KimSK, et al. (2002) X-chromosome silencing in the germline of C. elegans. Development 129: 479–492.

19. ReinkeV, SmithHE, NanceJ, WangJ, van DorenC, et al. (2000) A global profile of germline gene expression in C. elegans.. Mol Cell 6: 605–616.

20. LiebJD, de SolorzanoCO, RodriguezEG, JonesA, AngeloM, et al. (2000) The Caenorhabditis elegans dosage compensation machinery is recruited to X chromosome DNA attached to an autosome. Genetics 156: 1603–1621.

21. WellsMB, SnyderMJ, CusterLM, CsankovszkiG (2012) C. elegans Dosage Compensation Regulates Histone H4 Chromatin State on X. Mol Cell Biol in press.

22. NishiokaK, RiceJC, SarmaK, Erdjument-BromageH, WernerJ, et al. (2002) PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9: 1201–1213.

23. SchottaG, LachnerM, SarmaK, EbertA, SenguptaR, et al. (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18: 1251–1262.

24. YangH, PesaventoJJ, StarnesTW, CrydermanDE, WallrathLL, et al. (2008) Preferential dimethylation of histone H4 lysine 20 by Suv4-20. J Biol Chem 283: 12085–12092.

25. AndersenEC, HorvitzHR (2007) Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development 134: 2991–2999.

26. BarskiA, CuddapahS, CuiK, RohTY, SchonesDE, et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823–837.

27. PlenefischJD, DeLongL, MeyerBJ (1989) Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans. Genetics 121: 57–76.

28. MeyerBJ (2005) X-Chromosome dosage compensation. WormBook 1–14.

29. YangH, MizzenCA (2009) The multiple facets of histone H4-lysine 20 methylation. Biochem Cell Biol 87: 151–161.

30. KarachentsevD, SarmaK, ReinbergD, StewardR (2005) PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev 19: 431–435.

31. KohlmaierA, SavareseF, LachnerM, MartensJ, JenuweinT, et al. (2004) A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2: e171 doi:10.1371/journal.pbio.0020171.

32. TrojerP, LiG, SimsRJ3rd, VaqueroA, KalakondaN, et al. (2007) L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 129: 915–928.

33. BoccuniP, MacGroganD, ScanduraJM, NimerSD (2003) The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J Biol Chem 278: 15412–15420.

34. KalakondaN, FischleW, BoccuniP, GurvichN, Hoya-AriasR, et al. (2008) Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Oncogene 27: 4293–4304.

35. LiuW, TanasaB, TyurinaOV, ZhouTY, GassmannR, et al. (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466: 508–512.

36. OdaH, OkamotoI, MurphyN, ChuJ, PriceSM, et al. (2009) Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol 29: 2278–2295.

37. HoustonSI, McManusKJ, AdamsMM, SimsJK, CarpenterPB, et al. (2008) Catalytic function of the PR-Set7 histone H4 lysine 20 monomethyltransferase is essential for mitotic entry and genomic stability. J Biol Chem 283: 19478–19488.

38. JorgensenS, ElversI, TrelleMB, MenzelT, EskildsenM, et al. (2007) The histone methyltransferase SET8 is required for S-phase progression. J Cell Biol 179: 1337–1345.

39. TardatM, MurrR, HercegZ, SardetC, JulienE (2007) PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase. J Cell Biol 179: 1413–1426.

40. RechtsteinerA, ErcanS, TakasakiT, PhippenTM, EgelhoferTA, et al. (2010) The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet 6 doi:10.1371/journal.pgen.1001091.

41. Kolasinska-ZwierzP, DownT, LatorreI, LiuT, LiuXS, et al. (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41: 376–381.

42. EgelhoferTA, MinodaA, KlugmanS, LeeK, Kolasinska-ZwierzP, et al. (2010) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18: 91–93.

43. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.

44. CheungMS, DownTA, LatorreI, AhringerJ (2011) Systematic bias in high-throughput sequencing data and its correction by BEADS. Nucleic Acids Res 39: e103.

45. BolstadBM, IrizarryRA, AstrandM, SpeedTP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19.

46. IrizarryRA, ale (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

47. StromeS, WoodWB (1983) Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell 35: 15–25.

48. AndrewsR, AhringerJ (2007) Asymmetry of early endosome distribution in C. elegans embryos. PLoS ONE 2: e493 doi:10.1371/journal.pone.0000493.

49. DernburgAF, McDonaldK, MoulderG, BarsteadR, DresserM, et al. (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94: 387–398.

50. Ahringer (ed.) J Reverse genetics. In: Community TCeR, editor. Wormbook: Wormbook.

51. FraserAG, KamathRS, ZipperlenP, Martinez-CamposM, SohrmannM, et al. (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408: 325–330.

52. KamathRS, FraserAG, DongY, PoulinG, DurbinR, et al. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421: 231–237.

53. ErcanS, GiresiPG, WhittleCM, ZhangX, GreenRD, et al. (2007) X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation. Nat Genet 39: 403–408.

54. ErcanS, LublingY, SegalE, LiebJD (2010) High nucleosome occupancy is encoded at X-linked gene promoters in C. elegans. Genome Res 21: 237–244.

55. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.

56. ZhangY, LiuT, MeyerCA, EeckhouteJ, JohnsonDS, et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: R137.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#