The Non-Flagellar Type III Secretion System Evolved from the Bacterial Flagellum and Diversified into Host-Cell Adapted Systems
Type 3 secretion systems (T3SSs) are essential components of two complex bacterial machineries:
the flagellum, which drives cell motility, and the non-flagellar T3SS (NF-T3SS), which delivers effectors into eukaryotic cells. Yet the origin, specialization, and diversification of these machineries remained unclear. We developed computational tools to identify homologous components of the two systems and to discriminate between them. Our analysis of >1,000 genomes identified 921 T3SSs, including 222 NF-T3SSs. Phylogenomic and comparative analyses of these systems argue that the NF-T3SS arose from an exaptation of the flagellum, i.e. the recruitment of part of the flagellum structure for the evolution of the new protein delivery function. This reconstructed chronology of the exaptation process proceeded in at least two steps. An intermediate ancestral form of NF-T3SS, whose descendants still exist in Myxococcales, lacked elements that are essential for motility and included a subset of NF-T3SS features. We argue that this ancestral version was involved in protein translocation. A second major step in the evolution of NF-T3SSs occurred via recruitment of secretins to the NF-T3SS, an event that occurred at least three times from different systems. In rhizobiales, a partial homologous gene replacement of the secretin resulted in two genes of complementary function. Acquisition of a secretin was followed by the rapid adaptation of the resulting NF-T3SSs to multiple, distinct eukaryotic cell envelopes where they became key in parasitic and mutualistic associations between prokaryotes and eukaryotes. Our work elucidates major steps of the evolutionary scenario leading to extant NF-T3SSs. It demonstrates how molecular evolution can convert one complex molecular machine into a second, equally complex machine by successive deletions, innovations, and recruitment from other molecular systems.
Vyšlo v časopise:
The Non-Flagellar Type III Secretion System Evolved from the Bacterial Flagellum and Diversified into Host-Cell Adapted Systems. PLoS Genet 8(9): e32767. doi:10.1371/journal.pgen.1002983
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002983
Souhrn
Type 3 secretion systems (T3SSs) are essential components of two complex bacterial machineries:
the flagellum, which drives cell motility, and the non-flagellar T3SS (NF-T3SS), which delivers effectors into eukaryotic cells. Yet the origin, specialization, and diversification of these machineries remained unclear. We developed computational tools to identify homologous components of the two systems and to discriminate between them. Our analysis of >1,000 genomes identified 921 T3SSs, including 222 NF-T3SSs. Phylogenomic and comparative analyses of these systems argue that the NF-T3SS arose from an exaptation of the flagellum, i.e. the recruitment of part of the flagellum structure for the evolution of the new protein delivery function. This reconstructed chronology of the exaptation process proceeded in at least two steps. An intermediate ancestral form of NF-T3SS, whose descendants still exist in Myxococcales, lacked elements that are essential for motility and included a subset of NF-T3SS features. We argue that this ancestral version was involved in protein translocation. A second major step in the evolution of NF-T3SSs occurred via recruitment of secretins to the NF-T3SS, an event that occurred at least three times from different systems. In rhizobiales, a partial homologous gene replacement of the secretin resulted in two genes of complementary function. Acquisition of a secretin was followed by the rapid adaptation of the resulting NF-T3SSs to multiple, distinct eukaryotic cell envelopes where they became key in parasitic and mutualistic associations between prokaryotes and eukaryotes. Our work elucidates major steps of the evolutionary scenario leading to extant NF-T3SSs. It demonstrates how molecular evolution can convert one complex molecular machine into a second, equally complex machine by successive deletions, innovations, and recruitment from other molecular systems.
Zdroje
1. LeeVT, SchneewindO (2001) Protein secretion and the pathogenesis of bacterial infections. Genes Dev 15: 1725–1752.
2. NogueiraT, RankinDJ, TouchonM, TaddeiF, BrownSP, et al. (2009) Horizontal gene transfer of the secretome drives the evolution of bacterial cooperation and virulence. Curr Biol 19: 1683–1691.
3. HueckCJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62: 379–433.
4. GhoshP (2004) Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68: 771–795.
5. GalanJE, Wolf-WatzH (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444: 567–573.
6. CornelisGR (2006) The type III secretion injectisome. Nat Rev Microbiol 4: 811–825.
7. McCannHC, GuttmanDS (2008) Evolution of the type III secretion system and its effectors in plant-microbe interactions. New Phytologist 177: 33–47.
8. KosarewiczA, KonigsmaierL, MarlovitsTC (2012) The blueprint of the type-3 injectisome. Philos Trans R Soc Lond B Biol Sci 367: 1140–1154.
9. AttreeO, AttreeI (2001) A second type III secretion system in Burkholderia pseudomallei: who is the real culprit? Microbiology 147: 3197–3199.
10. RainbowL, HartCA, WinstanleyC (2002) Distribution of type III secretion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mallei. J Med Microbiol 51: 374–384.
11. SunGW, GanYH (2010) Unraveling type III secretion systems in the highly versatile Burkholderia pseudomallei. Trends Microbiol 18: 561–568.
12. Hansen-WesterI, HenselM (2001) Salmonella pathogenicity islands encoding type III secretion systems. Microbes Infect 3: 549–559.
13. Martinez-BecerraFJ, KissmannJM, Diaz-McNairJ, ChoudhariSP, QuickAM, et al. (2011) A broadly protective Shigella vaccine based on Type III secretion apparatus proteins. Infect Immun 80: 1222–1231.
14. KlineT, FeliseHB, SanowarS, MillerSI (2011) The Type III Secretion System as a Source of Novel Antibacterial Drug Targets. Curr Drug Targets 13: 338–351.
15. RussmannH, ShamsH, PobleteF, FuY, GalanJE, et al. (1998) Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 281: 565–568.
16. WieserA, MagistroG, NorenbergD, HoffmannC, SchubertS (2012) First multi-epitope subunit vaccine against extraintestinal pathogenic Escherichia coli delivered by a bacterial type-3 secretion system (T3SS). Int J Med Microbiol 302: 10–18.
17. DaleC, PlagueGR, WangB, OchmanH, MoranNA (2002) Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc Natl Acad Sci U S A 99: 12397–12402.
18. FreibergC, FellayR, BairochA, BroughtonWJ, RosenthalA, et al. (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394–401.
19. LacknerG, MoebiusN, HertweckC (2011) Endofungal bacterium controls its host by an hrp type III secretion system. ISME J 5: 252–261.
20. HornM, CollingroA, Schmitz-EsserS, BeierCL, PurkholdU, et al. (2004) Illuminating the evolutionary history of chlamydiae. Science 304: 728–730.
21. DesvauxM, HebraudM, TalonR, HendersonIR (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17: 139–145.
22. MichielsT, VanooteghemJC, Lambert de RouvroitC, ChinaB, GustinA, et al. (1991) Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica. J Bacteriol 173: 4994–5009.
23. HuangHC, HeSY, BauerDW, CollmerA (1992) The Pseudomonas syringae pv. syringae 61 hrpH product, an envelope protein required for elicitation of the hypersensitive response in plants. J Bacteriol 174: 6878–6885.
24. CharkowskiAO, HuangHC, CollmerA (1997) Altered localization of HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggests that different components of the type III secretion pathway control protein translocation across the inner and outer membranes of gram-negative bacteria. J Bacteriol 179: 3866–3874.
25. KorotkovKV, GonenT, HolWGJ (2011) Secretins: dynamic channels for protein transport across membranes. Trends Biochem Sci 36: 433–443.
26. KuboriT, SukhanA, AizawaSI, GalanJE (2000) Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci U S A 97: 10225–10230.
27. KuboriT, MatsushimaY, NakamuraD, UralilJ, Lara-TejeroM, et al. (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602–605.
28. HoiczykE, BlobelG (2001) Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc Natl Acad Sci U S A 98: 4669–4674.
29. KimbroughTG, MillerSI (2000) Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc Natl Acad Sci U S A 97: 11008–11013.
30. RoineE, SaarinenJ, KalkkinenN, RomantschukM (1997) Purified HrpA of Pseudomonas syringae pv. tomato DC3000 reassembles into pili. FEBS Lett 417: 168–172.
31. Van GijsegemF, VasseJ, CamusJC, MarendaM, BoucherC (2000) Ralstonia solanacearum produces hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol Microbiol 36: 249–260.
32. HeSY, JinQ (2003) The Hrp pilus: learning from flagella. Curr Opin Microbiol 6: 15–19.
33. MenardR, SansonettiP, ParsotC (1994) The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J 13: 5293–5302.
34. PickingWL, NishiokaH, HearnPD, BaxterMA, HarringtonAT, et al. (2005) IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect Immun 73: 1432–1440.
35. HakanssonS, SchesserK, PerssonC, GalyovEE, RosqvistR, et al. (1996) The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J 15: 5812–5823.
36. VoglerAP, HommaM, IrikuraVM, MacnabRM (1991) Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits. J Bacteriol 173: 3564–3572.
37. DreyfusG, WilliamsAW, KawagishiI, MacnabRM (1993) Genetic and biochemical analysis of Salmonella typhimurium FliI, a flagellar protein related to the catalytic subunit of the F0F1 ATPase and to virulence proteins of mammalian and plant pathogens. J Bacteriol 175: 3131–3138.
38. PallenMJ, BaileyCM, BeatsonSA (2006) Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases. Protein Sci 15: 935–941.
39. MulkidjanianAY, MakarovaKS, GalperinMY, KooninEV (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol 5: 892–899.
40. VenkatesanMM, BuysseJM, OaksEV (1992) Surface presentation of Shigella flexneri invasion plasmid antigens requires the products of the spa locus. J Bacteriol 174: 1990–2001.
41. WoestynS, AllaouiA, WattiauP, CornelisGR (1994) YscN, the putative energizer of the Yersinia Yop secretion machinery. J Bacteriol 176: 1561–1569.
42. EichelbergK, GinocchioCC, GalánJE (1994) Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J Bacteriol 176: 4501–4510.
43. GalanJE (2008) Energizing type III secretion machines: what is the fuel? Nat Struct Mol Biol 15: 127–128.
44. Lara-TejeroM, KatoJ, WagnerS, LiuX, GalanJE (2011) A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331: 1188–1191.
45. EdqvistPJ, OlssonJ, LavanderM, SundbergL, ForsbergA, et al. (2003) YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J Bacteriol 185: 2259–2266.
46. ZarivachR, DengW, VuckovicM, FeliseHB, NguyenHV, et al. (2008) Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS. Nature 453: 124–127.
47. TamanoK, KatayamaE, ToyotomeT, SasakawaC (2002) Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length. J Bacteriol 184: 1244–1252.
48. JournetL, AgrainC, BrozP, CornelisGR (2003) The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302: 1757–1760.
49. WoodSE, JinJ, LloydSA (2008) YscP and YscU switch the substrate specificity of the Yersinia type III secretion system by regulating export of the inner rod protein YscI. J Bacteriol 190: 4252–4262.
50. DiepoldA, AmstutzM, AbelS, SorgI, JenalU, et al. (2010) Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J 29: 1928–1940.
51. DiepoldA, WiesandU, CornelisGR (2011) The assembly of the export apparatus (YscR,S,T,U,V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol Microbiol 82: 502–514.
52. WagnerS, KonigsmaierL, Lara-TejeroM, LefebreM, MarlovitsTC, et al. (2010) Organization and coordinated assembly of the type III secretion export apparatus. Proc Natl Acad Sci U S A 107: 17745–17750.
53. SukhanA, KuboriT, WilsonJ, GalanJE (2001) Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J Bacteriol 183: 1159–1167.
54. DeaneJE, AbrusciP, JohnsonS, LeaSM (2010) Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67: 1065–1075.
55. BlockerA, KomoriyaK, AizawaS (2003) Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc Natl Acad Sci U S A 100: 3027–3030.
56. FerrisHU, MinaminoT (2006) Flipping the switch: bringing order to flagellar assembly. Trends Microbiol 14: 519–526.
57. MinaminoT, NambaK (2004) Self-assembly and type III protein export of the bacterial flagellum. J Mol Microbiol Biotechnol 7: 5–17.
58. MotaLJ, JournetL, SorgI, AgrainC, CornelisGR (2005) Bacterial injectisomes: needle length does matter. Science 307: 1278.
59. KenjaleR, WilsonJ, ZenkSF, SauryaS, PickingWL, et al. (2005) The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J Biol Chem 280: 42929–42937.
60. EdgrenT, ForsbergA, RosqvistR, Wolf-WatzH (2012) Type III Secretion in Yersinia: Injectisome or Not? PLoS Pathog 8: e1002669 doi:10.1371/journal.ppat.1002669.
61. PallenMJ, BeatsonSA, BaileyCM (2005) Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective. FEMS Microbiol Rev 29: 201–229.
62. TroisfontainesP, CornelisGR (2005) Type III secretion: more systems than you think. Physiology 20: 326–339.
63. BlockerA, GounonP, LarquetE, NiebuhrK, CabiauxV, et al. (1999) The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J Cell Biol 147: 683–693.
64. SheaJE, HenselM, GleesonC, HoldenDW (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93: 2593–2597.
65. OchmanH, SonciniFC, SolomonF, GroismanEA (1996) Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 93: 7800–7804.
66. CornelisGR, Wolf-WatzH (1997) The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol 23: 861–867.
67. PetersJ, WilsonDP, MyersG, TimmsP, BavoilPM (2007) Type III secretion à la Chlamydia. Trends Microbiol 15: 241–251.
68. RahmeLG, MindrinosMN, PanopoulosNJ (1991) Genetic and transcriptional organization of the hrp cluster of Pseudomonas syringae pv. phaseolicola. J Bacteriol 173: 575–586.
69. Van GijsegemF, GoughC, ZischekC, NiqueuxE, ArlatM, et al. (1995) The hrp gene locus of Pseudomonas solanacearum, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. Mol Microbiol 15: 1095–1114.
70. GinocchioCC, OlmstedSB, WellsCL, GalanJE (1994) Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell 76: 717–724.
71. PallenMJ, MatzkeNJ (2006) From The Origin of Species to the origin of bacterial flagella. Nat Rev Microbiol 4: 784–790.
72. SchoenhalsGJ, MacnabRM (1996) Physiological and biochemical analyses of FlgH, a lipoprotein forming the outer membrane L ring of the flagellar basal body of Salmonella typhimurium. J Bacteriol 178: 4200–4207.
73. LiuR, OchmanH (2007) Stepwise formation of the bacterial flagellar system. Proc Natl Acad Sci U S A 104: 7116–7121.
74. SnyderLA, LomanNJ, FuttererK, PallenMJ (2009) Bacterial flagellar diversity and evolution: seek simplicity and distrust it? Trends Microbiol 17: 1–5.
75. GophnaU, RonEZ, GraurD (2003) Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312: 151–163.
76. MediniD, CovacciA, DonatiC (2006) Protein homology network families reveal step-wise diversification of Type III and Type IV secretion systems. PLoS Comput Biol 2: e173 doi:10.1371/journal.pcbi.0030173.
77. NaumM, BrownEW, Mason-GamerRJ (2009) Phylogenetic evidence for extensive horizontal gene transfer of type III secretion system genes among enterobacterial plant pathogens. Microbiology 155: 3187–3199.
78. CollingroA, TischlerP, WeinmaierT, PenzT, HeinzE, et al. (2011) Unity in Variety - the Pan-Genome of the Chlamydiae. Mol Biol Evol 28: 3253–3270.
79. NguyenL, PaulsenIT, TchieuJ, HueckCJ, SaierMHJr (2000) Phylogenetic analyses of the constituents of Type III protein secretion systems. J Mol Microbiol Biotechnol 2: 125–144.
80. LiuR, OchmanH (2007) Origins of flagellar gene operons and secondary flagellar systems. J Bacteriol 189: 7098–7104.
81. KimJF (2001) Revisiting the chlamydial type III protein secretion system: clues to the origin of type III protein secretion. Trends Genet 17: 65–69.
82. FoultierB, TroisfontainesP, MullerS, OpperdoesFR, CornelisGR (2002) Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogeny analysis of type III secretion systems. J Mol Evol 55: 37–51.
83. GouldSJ, VrbaES (1982) Exaptation-A Missing Term in the Science of Form. Paleobiology 8: 4–15.
84. LucianoJ, AgrebiR, Le GallAV, WartelM, FiegnaF, et al. (2011) Emergence and Modular Evolution of a Novel Motility Machinery in Bacteria. PLoS Genet 7: e1002268 doi:10.1371/journal.pgen.1002268.
85. FinniganGC, Hanson-SmithV, StevensTH, ThorntonJW (2012) Evolution of increased complexity in a molecular machine. Nature 481: 360–U143.
86. EddySR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7: e1002195 doi:10.1371/journal.pcbi.1002195.
87. RenCP, ChaudhuriRR, FivianA, BaileyCM, AntonioM, et al. (2004) The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J Bacteriol 186: 3547–3560.
88. ZhangL, ChaudhuriRR, ConstantinidouC, HobmanJL, PatelMD, et al. (2004) Regulators encoded in the Escherichia coli type III secretion system 2 gene cluster influence expression of genes within the locus for enterocyte effacement in enterohemorrhagic E. coli O157:H7. Infect Immun 72: 7282–7293.
89. IdesesD, GophnaU, PaitanY, ChaudhuriRR, PallenMJ, et al. (2005) A degenerate type III secretion system from septicemic Escherichia coli contributes to pathogenesis. J Bacteriol 187: 8164–8171.
90. BettsHJ, TwiggsLE, SalMS, WyrickPB, FieldsKA (2008) Bioinformatic and biochemical evidence for the identification of the type III secretion system needle protein of Chlamydia trachomatis. J Bacteriol 190: 1680–1690.
91. DegnanPH, YuY, SisnerosN, WingRA, MoranNA (2009) Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci U S A 106: 9063–9068.
92. Betts-HampikianHJ, FieldsKA (2010) The Chlamydial Type III Secretion Mechanism: Revealing Cracks in a Tough Nut. Front Microbiol 1: 114.
93. SaierMHJr (2004) Evolution of bacterial type III protein secretion systems. Trends Microbiol 12: 113–115.
94. PallenMJ, GophnaU (2007) Bacterial flagella and Type III secretion: case studies in the evolution of complexity. Genome Dyn 3: 30–47.
95. CriscuoloA, GribaldoS (2010) BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10: 210.
96. StamatakisA (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.
97. AbbySS, TannierE, GouyM, DaubinV (2010) Detecting lateral gene transfers by statistical reconciliation of phylogenetic forests. BMC Bioinformatics 11: 324.
98. KonovalovaA, PettersT, Sogaard-AndersenL (2010) Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 34: 89–106.
99. GarciaR, GerthK, StadlerM, DogmaIJJr, MullerR (2010) Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. Mol Phylogenet Evol 57: 878–887.
100. Charif D, Lobry JR (2007) SeqinR 1.0–2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto M, Roman HE, Vendruscolo M, editors. Structural approaches to sequence evolution: Molecules, networks, populations. New York: Springer Verlag. pp. 207–232.
101. BettsHJ, ChaudhuriRR, PallenMJ (2004) An analysis of type-III secretion gene clusters in Chromobacterium violaceum. Trends Microbiol 12: 476–482.
102. ClockSA, PlanetPJ, PerezBA, FigurskiDH (2008) Outer membrane components of the Tad (tight adherence) secreton of Aggregatibacter actinomycetemcomitans. J Bacteriol 190: 980–990.
103. TomichM, PlanetPJ, FigurskiDH (2007) The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 5: 363–375.
104. MarieC, BroughtonWJ, DeakinWJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4: 336–342.
105. YeatsC, BatemanA (2003) The BON domain: a putative membrane-binding domain. Trends Biochem Sci 28: 352–355.
106. SubtilA, ParsotC, Dautry-VarsatA (2001) Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery. Mol Microbiol 39: 792–800.
107. AndersonDM, FoutsDE, CollmerA, SchneewindO (1999) Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals. Proc Natl Acad Sci U S A 96: 12839–12843.
108. Fonnesbech VogelB, VenkateswaranK, SatomiM, GramL (2005) Identification of Shewanella baltica as the most important H2S-producing species during iced storage of Danish marine fish. Appl Environ Microbiol 71: 6689–6697.
109. EspinosaE, Marco-NoalesE, GomezD, Lucas-ElioP, OrdaxM, et al. (2010) Taxonomic study of Marinomonas strains isolated from the seagrass Posidonia oceanica, with descriptions of Marinomonas balearica sp. nov. and Marinomonas pollencensis sp. nov. International journal of systematic and evolutionary microbiology 60: 93–98.
110. MarguerettazM, PierettiI, GayralP, PuigJ, BrinC, et al. (2011) Genomic and evolutionary features of the SPI-1 type III secretion system that is present in Xanthomonas albilineans but is not essential for xylem colonization and symptom development of sugarcane leaf scald. Mol Plant Microbe Interact 24: 246–259.
111. SchikoraA, Virlogeux-PayantI, BuesoE, GarciaAV, NilauT, et al. (2011) Conservation of Salmonella infection mechanisms in plants and animals. PLoS ONE 6: e24112 doi:10.1371/journal.pone.0024112.
112. KimD, KimJF, YimJH, KwonS-K, LeeCH, et al. (2008) Red to red - the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J Microbiol Biotechnol 18: 1621–1629.
113. CallonC, DuthoitF, DelbèsC, FerrandM, Le FrileuxY, et al. (2007) Stability of microbial communities in goat milk during a lactation year: molecular approaches. Syst Appl Microbiol 30: 547–560.
114. YoungGM, SchmielDH, MillerVL (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 96: 6456–6461.
115. GuerryP (2007) Campylobacter flagella: not just for motility. Trends Microbiol 15: 456–461.
116. MaezawaK, ShigenobuS, TaniguchiH, KuboT, AizawaS, et al. (2006) Hundreds of flagellar basal bodies cover the cell surface of the endosymbiotic bacterium Buchnera aphidicola sp. strain APS. J Bacteriol 188: 6539–6543.
117. ToftC, FaresMA (2008) The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol Biol Evol 25: 2069–2076.
118. BeheMJ (2010) Experimental evolution, loss-of-function mutations, and “the first rule of adaptive evolution”. Q Rev Biol 85: 419–445.
119. LeeSH, GalanJE (2004) Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol 51: 483–495.
120. MarkhamAP, JaafarZA, KemegeKE, MiddaughCR, HeftyPS (2009) Biophysical characterization of Chlamydia trachomatis CT584 supports its potential role as a type III secretion needle tip protein. Biochemistry 48: 10353–10361.
121. LimbergerRJ (2004) The periplasmic flagellum of spirochetes. J Mol Microbiol Biotechnol 7: 30–40.
122. DworkinM (1996) Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 60: 70–102.
123. DavisBM, LawsonEH, SandkvistM, AliA, SozhamannanS, et al. (2000) Convergence of the Secretory Pathways for Cholera Toxin and the Filamentous Phage, CTXφ. Science 288: 333–335.
124. SpreterT, YipCK, SanowarS, AndreI, KimbroughTG, et al. (2009) A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nat Struct Mol Biol 16: 468–476.
125. SchraidtO, LefebreMD, BrunnerMJ, SchmiedWH, SchmidtA, et al. (2010) Topology and Organization of the Salmonella typhimurium Type III Secretion Needle Complex Components. PLoS Pathog 6: e1000824 doi:10.1371/journal.ppat.1000824.
126. SanowarS, SinghP, PfuetznerRA, AndreI, ZhengH, et al. (2010) Interactions of the transmembrane polymeric rings of the Salmonella enterica serovar Typhimurium type III secretion system. MBio 1: e00158–00110.
127. RossJA, PlanoGV (2011) A C-terminal region of Yersinia pestis YscD binds the outer membrane secretin YscC. J Bacteriol 193: 2276–2289.
128. KuboriT, YamaguchiS, AizawaS (1997) Assembly of the switch complex onto the MS ring complex of Salmonella typhimurium does not require any other flagellar proteins. J Bacteriol 179: 813–817.
129. MacnabRM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57: 77–100.
130. GuttmanDS, GroppSJ, MorganRL, WangPW (2006) Diversifying selection drives the evolution of the type III secretion system pilus of Pseudomonas syringae. Mol Biol Evol 23: 2342–2354.
131. WeberE, KoebnikR (2006) Positive selection of the Hrp pilin HrpE of the plant pathogen Xanthomonas. J Bacteriol 188: 1405–1410.
132. EnrightAJ, Van DongenS, OuzounisCA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30: 1575–1584.
133. EdgarRC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
134. GouyM, GuindonS, GascuelO (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: 221–224.
135. Huberty CJ (1994) Applied Discriminant Analysis. New York: Wiley-Interscience. 488 p.
136. LeSQ, GascuelO (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25: 1307–1320.
137. MieleV, PenelS, DuretL (2011) Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformatics 12: 116.
138. ChevenetF, CroceO, HebrardM, ChristenR, BerryV (2010) ScripTree: scripting phylogenetic graphics. Bioinformatics 26: 1125–1126.
139. ErhardtM, NambaK, HughesKT (2010) Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect Biol 2: a000299.
140. QuevillonE, SilventoinenV, PillaiS, HarteN, MulderN, et al. (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33: W116–120.
141. YuNY, WagnerJR, LairdMR, MelliG, ReyS, et al. (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 1608–1615.
142. FieldsKA, FischerER, MeadDJ, HackstadtT (2005) Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates. J Bacteriol 187: 6466–6478.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 9
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Enrichment of HP1a on Drosophila Chromosome 4 Genes Creates an Alternate Chromatin Structure Critical for Regulation in this Heterochromatic Domain
- Normal DNA Methylation Dynamics in DICER1-Deficient Mouse Embryonic Stem Cells
- The NDR Kinase Scaffold HYM1/MO25 Is Essential for MAK2 MAP Kinase Signaling in
- Functional Variants in and Involved in Activation of the NF-κB Pathway Are Associated with Rheumatoid Arthritis in Japanese