GWAS of Diabetic Nephropathy: Is the GENIE out of the Bottle?
article has not abstract
Vyšlo v časopise:
GWAS of Diabetic Nephropathy: Is the GENIE out of the Bottle?. PLoS Genet 8(9): e32767. doi:10.1371/journal.pgen.1002989
Kategorie:
Perspective
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002989
Souhrn
article has not abstract
Zdroje
1. Ismail-BeigiF, CravenT, BanerjiMA, BasileJ, CallesJ, et al. (2010) Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 376: 419–430.
2. GersteinHC, MillerME, ByingtonRP, GoffDCJr, BiggerJT, et al. (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358: 2545–2559.
3. PatelA, MacMahonS, ChalmersJ, NealB, BillotL, et al. (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358: 2560–2572.
4. HallerH, ItoS, IzzoJLJr, JanuszewiczA, KatayamaS, et al. (2011) Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med 364: 907–917.
5. ReavenPD, MoritzTE, SchwenkeDC, AndersonRJ, CriquiM, et al. (2009) Intensive glucose-lowering therapy reduces cardiovascular disease events in veterans affairs diabetes trial participants with lower calcified coronary atherosclerosis. Diabetes 58: 2642–2648.
6. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group (2003) Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290: 2159–2167.
7. SeaquistER, GoetzFC, RichS, BarbosaJ (1989) Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 320: 1161–1165.
8. BögerC, HeidI (2011) Chronic kidney disease: novel insights from genome wide association studies. Kidney Blood Press Res 34: 27–36.
9. SandholmN, SalemRM, McKnightAJ, BrennanEP, ForsblomC, et al. (2012) New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet 8: e1002921 doi:10.1371/journal.pgen.1002921.
10. VeikkolainenV, NaillatF, RailoA, ChiL, ManninenA, et al. (2012) ErbB4 modulates tubular cell polarity and lumen diameter during kidney development. J Am Soc Nephrol 23: 112–122.
11. EllisJW, ChenMH, FosterMC, LiuCT, LarsonMG, et al. (2012) Validated SNPs for eGFR and their associations with albuminuria. Hum Mol Genet 21: 3293–3298.
12. PlachaG, CananiLH, WarramJH, KrolewskiAS (2005) Evidence for different susceptibility genes for proteinuria and ESRD in type 2 diabetes. Adv Chronic Kidney Dis 12: 155–169.
13. BögerC, ChenMH, TinA, OldenM, KöttgenA, de BoerIH, et al. (2011) CUBN is a Gene Locus for Albuminuria. J Am Soc Nephrol 22: 555–570.
14. KöttgenA, PattaroC, BögerCA, FuchsbergerC, OldenM, et al. (2010) New loci associated with kidney function and chronic kidney disease. Nat Genet 42: 376–384.
15. PattaroC, KottgenA, TeumerA, GarnaasM, BogerCA, et al. (2012) Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet 8: e1002584 doi:10.1371/journal.pgen.1002584.
16. BögerC, GorskiM, LiM, HoffmannM, HuangC, et al. (2011) Association of eGFR-related loci identified by GWAS with incident CKD and ESRD. PLoS Genet 7: e1002292 doi:10.1371/journal.pgen.1002292.
17. KaoWH, KlagMJ, MeoniLA, ReichD, Berthier-SchaadY, et al. (2008) MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet 40: 1185–1192.
18. KoppJB, SmithMW, NelsonGW, JohnsonRC, FreedmanBI, et al. (2008) MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 40: 1175–1184.
19. StanescuHC, Arcos-BurgosM, MedlarA, BockenhauerD, KöttgenA, et al. (2011) Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med 364: 616–626.
20. GharaviAG, KirylukK, ChoiM, LiY, HouP, et al. (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43: 321–327.
21. LyonsPA, RaynerTF, TrivediS, HolleJU, WattsRA, et al. (2012) Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med 367: 214–223.
22. GenoveseG, FriedmanDJ, RossMD, LecordierL, UzureauP, et al. (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329: 841–845.
23. RemuzziG, BenigniA, RemuzziA (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116: 288–296.
24. SteinkeJM, SinaikoAR, KramerMS, SuissaS, ChaversBM, et al. (2005) The early natural history of nephropathy in type 1 diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 54: 2164–2171.
25. PerkinsBA, FicocielloLH, RoshanB, WarramJH, KrolewskiAS (2010) In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int 77: 57–64.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 9
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Enrichment of HP1a on Drosophila Chromosome 4 Genes Creates an Alternate Chromatin Structure Critical for Regulation in this Heterochromatic Domain
- Normal DNA Methylation Dynamics in DICER1-Deficient Mouse Embryonic Stem Cells
- The NDR Kinase Scaffold HYM1/MO25 Is Essential for MAK2 MAP Kinase Signaling in
- Functional Variants in and Involved in Activation of the NF-κB Pathway Are Associated with Rheumatoid Arthritis in Japanese