#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Systematic Mapping Approach of 16q12.2/ and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study


Genetic variants in intron 1 of the fat mass– and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI–associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646–kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10−6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations.


Vyšlo v časopise: A Systematic Mapping Approach of 16q12.2/ and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study. PLoS Genet 9(1): e32767. doi:10.1371/journal.pgen.1003171
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003171

Souhrn

Genetic variants in intron 1 of the fat mass– and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI–associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646–kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10−6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations.


Zdroje

1. FraylingTM, TimpsonNJ, WeedonMN, ZegginiE, FreathyRM, et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316: 889–894.

2. ThorleifssonG, WaltersGB, GudbjartssonDF, SteinthorsdottirV, SulemP, et al. (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41: 18–24.

3. HinneyA, NguyenTT, ScheragA, FriedelS, BronnerG, et al. (2007) Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS ONE 2: e1361 doi:10.1371/journal.pone.0001361.

4. RenstromF, PayneF, NordstromA, BritoEC, RolandssonO, et al. (2009) Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden. Hum Mol Genet 18: 1489–1496.

5. ScuteriA, SannaS, ChenWM, UdaM, AlbaiG, et al. (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3: e115 doi:10.1371/journal.pgen.0030115.

6. SongY, YouNC, HsuYH, HowardBV, LangerRD, et al. (2008) FTO polymorphisms are associated with obesity but not diabetes risk in postmenopausal women. Obesity 16: 2472–2480.

7. WillerCJ, SpeliotesEK, LoosRJ, LiS, LindgrenCM, et al. (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. NatGenet 41: 25–34.

8. DinaC, MeyreD, GallinaS, DurandE, KornerA, et al. (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39: 724–726.

9. WangK, LiWD, ZhangCK, WangZ, GlessnerJT, et al. (2011) A genome-wide association study on obesity and obesity-related traits. PLoS ONE 6: e18939 doi:10.1371/journal.pone.0018939.

10. CotsapasC, SpeliotesEK, HatoumIJ, GreenawaltDM, DobrinR, et al. (2009) Common body mass index-associated variants confer risk of extreme obesity. Hum Mol Genet 18: 3502–3507.

11. MeyreD, DelplanqueJ, ChevreJC, LecoeurC, LobbensS, et al. (2009) Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 41: 157–159.

12. LoosRJ, LindgrenCM, LiS, WheelerE, ZhaoJH, et al. (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40: 768–775.

13. SpeliotesEK, WillerCJ, BerndtSI, MondaKL, ThorleifssonG, et al. (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics 42: 937–948.

14. HennigBJ, FulfordAJ, SirugoG, Rayco-SolonP, HattersleyAT, et al. (2009) FTO gene variation and measures of body mass in an African population. BMC Med Genet 10: 21.

15. LiTY, RanaJS, MansonJE, WillettWC, StampferMJ, et al. (2006) Obesity as compared with physical activity in predicting risk of coronary heart disease in women. Circulation 113: 499–506.

16. AdamsKF, SchatzkinA, HarrisTB, KipnisV, MouwT, et al. (2006) Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med 355: 763–778.

17. FlegalKM, CarrollMD, OgdenCL, CurtinLR (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303: 235–241.

18. WingMR, ZieglerJM, LangefeldCD, RohBH, PalmerND, et al. (2010) Analysis of FTO gene variants with obesity and glucose homeostasis measures in the multiethnic Insulin Resistance Atherosclerosis Study cohort. Int J Obes (Lond)

19. WingMR, ZieglerJ, LangefeldCD, NgMC, HaffnerSM, et al. (2009) Analysis of FTO gene variants with measures of obesity and glucose homeostasis in the IRAS Family Study. Hum Genet 125: 615–626.

20. DorajooR, BlakemoreAI, SimX, OngRT, NgDP, et al. (2011) Replication of 13 obesity loci among Singaporean Chinese, Malay and Asian-Indian populations. Int J Obes (Lond)

21. ChaSW, ChoiSM, KimKS, ParkBL, KimJR, et al. (2008) Replication of genetic effects of FTO polymorphisms on BMI in a Korean population. Obesity (Silver Spring) 16: 2187–2189.

22. ChangYC, LiuPH, LeeWJ, ChangTJ, JiangYD, et al. (2008) Common variation in the fat mass and obesity-associated (FTO) gene confers risk of obesity and modulates BMI in the Chinese population. Diabetes 57: 2245–2252.

23. TanJT, DorajooR, SeielstadM, SimXL, OngRT, et al. (2008) FTO variants are associated with obesity in the Chinese and Malay populations in Singapore. Diabetes 57: 2851–2857.

24. NgMC, ParkKS, OhB, TamCH, ChoYM, et al. (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57: 2226–2233.

25. Al-AttarSA, PollexRL, BanMR, YoungTK, BjerregaardP, et al. (2008) Association between the FTO rs9939609 polymorphism and the metabolic syndrome in a non-Caucasian multi-ethnic sample. Cardiovasc Diabetol 7: 5.

26. OmoriS, TanakaY, TakahashiA, HiroseH, KashiwagiA, et al. (2008) Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57: 791–795.

27. GrantSF, LiM, BradfieldJP, KimCE, AnnaiahK, et al. (2008) Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS ONE 3: e1746 doi:10.1371/journal.pone.0001746.

28. BollepalliS, DolanLM, DekaR, MartinLJ (2010) Association of FTO gene variants with adiposity in African-American adolescents. Obesity (Silver Spring) 18: 1959–1963.

29. NockNL, PlummerSJ, ThompsonCL, CaseyG, LiL (2011) FTO polymorphisms are associated with adult body mass index (BMI) and colorectal adenomas in African-Americans. Carcinogenesis 32: 748–756.

30. AdeyemoA, ChenG, ZhouJ, ShrinerD, DoumateyA, et al. (2010) FTO genetic variation and association with obesity in West Africans and African Americans. Diabetes 59: 1549–1554.

31. HassaneinMT, LyonHN, NguyenTT, AkylbekovaEL, WatersK, et al. (2010) Fine mapping of the association with obesity at the FTO locus in African-derived populations. Human molecular genetics 19: 2907–2916.

32. Hester JM, Wing MR, Li J, Palmer ND, Xu J, et al.. (2011) Implication of European-derived adiposity loci in African Americans. International journal of obesity.

33. McKenzieCA, AbecasisGR, KeavneyB, ForresterT, RatcliffePJ, et al. (2001) Trans-ethnic fine mapping of a quantitative trait locus for circulating angiotensin I-converting enzyme (ACE). Hum Mol Genet 10: 1077–1084.

34. StratigopoulosG, LeDucCA, CremonaML, ChungWK, LeibelRL (2011) Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator-interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. The Journal of biological chemistry 286: 2155–2170.

35. VoightBF, KangHM, DingJ, PalmerCD, SidoreC, et al. (2012) The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 8: e1002793 doi:10.1371/journal.pgen.1002793.

36. KentWJ, SugnetCW, FureyTS, RoskinKM, PringleTH, et al. (2002) The human genome browser at UCSC. Genome Res 12: 996–1006.

37. (ESP) NESP (January 2012) Exome Variant Server.

38. DeoRC, ReichD, TandonA, AkylbekovaE, PattersonN, et al. (2009) Genetic differences between the determinants of lipid profile phenotypes in African and European Americans: the Jackson Heart Study. PLoS Genet 5: e1000342 doi:10.1371/journal.pgen.1000342.

39. JiaoS, HsuL, HutterCM, PetersU (2011) The use of imputed values in the meta-analysis of genome-wide association studies. GenetEpidemiol 35: 597–605.

40. MatiseTC, AmbiteJL, BuyskeS, CarlsonCS, ColeSA, et al. (2011) The Next PAGE in understanding complex traits: design for the analysis of Population Architecture Using Genetics and Epidemiology (PAGE) Study. Am J Epidemiol 174: 849–859.

41. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol 129: 687–702.

42. Multi-center genetic study of hypertension: The Family Blood Pressure Program (FBPP). Hypertension 39: 3–9.

43. KolonelLN, HendersonBE, HankinJH, NomuraAM, WilkensLR, et al. (2000) A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am J Epidemiol 151: 346–357.

44. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Control Clin Trials 19: 61–109.

45. GorberSC, TremblayMS (2010) The bias in self-reported obesity from 1976 to 2005: a Canada-US comparison. Obesity (Silver Spring) 18: 354–361.

46. FrazerKA, BallingerDG, CoxDR, HindsDA, StuveLL, et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–861.

47. WealeME (2010) Quality control for genome-wide association studies. Methods Mol Biol 628: 341–372.

48. PattersonN, PriceAL, ReichD (2006) Population structure and eigenanalysis. PLoS Genet 2: e190 doi:10.1371/journal.pgen.0020190.

49. PriceAL, PattersonNJ, PlengeRM, WeinblattME, ShadickNA, et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904–909.

50. BuyskeS, WuY, CartyCL, ChengI, AssimesTL, et al. (2012) Evaluation of the Metabochip Genotyping Array in African Americans and Implications for Fine Mapping of GWAS-Identified Loci: The PAGE Study. PLoS ONE 7: e35651 doi:10.1371/journal.pone.0035651.

51. LiuYAA, BuyskeS, PetersU, BoerwinkleE, CarlsonC, CartyC, CrawfordDC, HaesslerJ, HaimanC, Le MarchandL, HindorffL, ManolioT, MatiseT, WangW, KooperbergCL, NorthKE, LiY (In Press) Genotype Imputation of Metabochip SNPs Using study specific reference panel of ∼4,000 haplotypes in African Americans. Genet Epidemiol

52. DurbinRM, AbecasisGR, AltshulerDL, AutonA, BrooksLD, et al. (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073.

53. HowieB, MarchiniJ, StephensM (2011) Genotype imputation with thousands of genomes. G3 (Bethesda) 1: 457–470.

54. BrowningSR, BrowningBL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81: 1084–1097.

55. HowieB, FuchsbergerC, StephensM, MarchiniJ, AbecasisGR (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 44: 955–959.

56. WillerCJ, LiY, AbecasisGR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26: 2190–2191.

57. DerSimonianR, LairdN (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188.

58. HigginsJP, ThompsonSG, DeeksJJ, AltmanDG (2003) Measuring inconsistency in meta-analyses. BMJ 327: 557–560.

59. PruimRJ, WelchRP, SannaS, TeslovichTM, ChinesPS, et al. (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26: 2336–2337.

60. LevyS, HannenhalliS (2002) Identification of transcription factor binding sites in the human genome sequence. Mamm Genome 13: 510–514.

61. SethupathyP, GiangH, PlotkinJB, HannenhalliS (2008) Genome-wide analysis of natural selection on human cis-elements. PLoS ONE 3: e3137 doi:10.1371/journal.pone.0003137.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#