WNK1/HSN2 Mutation in Human Peripheral Neuropathy Deregulates Expression and Posterior Lateral Line Development in Zebrafish ()
Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare pathology characterized by an early onset of severe sensory loss (all modalities) in the distal limbs. It is due to autosomal recessive mutations confined to exon “HSN2” of the WNK1 (with-no-lysine protein kinase 1) serine-threonine kinase. While this kinase is well studied in the kidneys, little is known about its role in the nervous system. We hypothesized that the truncating mutations present in the neural-specific HSN2 exon lead to a loss-of-function of the WNK1 kinase, impairing development of the peripheral sensory system. To investigate the mechanisms by which the loss of WNK1/HSN2 isoform function causes HSANII, we used the embryonic zebrafish model and observed strong expression of WNK1/HSN2 in neuromasts of the peripheral lateral line (PLL) system by immunohistochemistry. Knocking down wnk1/hsn2 in embryos using antisense morpholino oligonucleotides led to improper PLL development. We then investigated the reported interaction between the WNK1 kinase and neuronal potassium chloride cotransporter KCC2, as this transporter is a target of WNK1 phosphorylation. In situ hybridization revealed kcc2 expression in mature neuromasts of the PLL and semi-quantitative RT–PCR of wnk1/hsn2 knockdown embryos showed an increased expression of kcc2 mRNA. Furthermore, overexpression of human KCC2 mRNA in embryos replicated the wnk1/hsn2 knockdown phenotype. We validated these results by obtaining double knockdown embryos, both for wnk1/hsn2 and kcc2, which alleviated the PLL defects. Interestingly, overexpression of inactive mutant KCC2-C568A, which does not extrude ions, allowed a phenocopy of the PLL defects. These results suggest a pathway in which WNK1/HSN2 interacts with KCC2, producing a novel regulation of its transcription independent of KCC2's activation, where a loss-of-function mutation in WNK1 induces an overexpression of KCC2 and hinders proper peripheral sensory nerve development, a hallmark of HSANII.
Vyšlo v časopise:
WNK1/HSN2 Mutation in Human Peripheral Neuropathy Deregulates Expression and Posterior Lateral Line Development in Zebrafish (). PLoS Genet 9(1): e32767. doi:10.1371/journal.pgen.1003124
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003124
Souhrn
Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare pathology characterized by an early onset of severe sensory loss (all modalities) in the distal limbs. It is due to autosomal recessive mutations confined to exon “HSN2” of the WNK1 (with-no-lysine protein kinase 1) serine-threonine kinase. While this kinase is well studied in the kidneys, little is known about its role in the nervous system. We hypothesized that the truncating mutations present in the neural-specific HSN2 exon lead to a loss-of-function of the WNK1 kinase, impairing development of the peripheral sensory system. To investigate the mechanisms by which the loss of WNK1/HSN2 isoform function causes HSANII, we used the embryonic zebrafish model and observed strong expression of WNK1/HSN2 in neuromasts of the peripheral lateral line (PLL) system by immunohistochemistry. Knocking down wnk1/hsn2 in embryos using antisense morpholino oligonucleotides led to improper PLL development. We then investigated the reported interaction between the WNK1 kinase and neuronal potassium chloride cotransporter KCC2, as this transporter is a target of WNK1 phosphorylation. In situ hybridization revealed kcc2 expression in mature neuromasts of the PLL and semi-quantitative RT–PCR of wnk1/hsn2 knockdown embryos showed an increased expression of kcc2 mRNA. Furthermore, overexpression of human KCC2 mRNA in embryos replicated the wnk1/hsn2 knockdown phenotype. We validated these results by obtaining double knockdown embryos, both for wnk1/hsn2 and kcc2, which alleviated the PLL defects. Interestingly, overexpression of inactive mutant KCC2-C568A, which does not extrude ions, allowed a phenocopy of the PLL defects. These results suggest a pathway in which WNK1/HSN2 interacts with KCC2, producing a novel regulation of its transcription independent of KCC2's activation, where a loss-of-function mutation in WNK1 induces an overexpression of KCC2 and hinders proper peripheral sensory nerve development, a hallmark of HSANII.
Zdroje
1. DyckPJ (1993) Peripheral Neuropathy; Neuronal atrophy and degeneration predominantly affecting peripheral sensory neuropathy and autonomic neurons.
2. Auer-GrumbachM, MaukoB, Auer-GrumbachP, PieberTR (2006) Molecular genetics of hereditary sensory neuropathies. Neuromolecular Med 8: 147–158.
3. OgryzloMA (1946) A familial peripheral neuropathy of unknown etiology resembling Morvan's disease. Can Med Assoc J 54: 547–553.
4. JohnsonRH, SpaldingJM (1964) Progressive Sensory Neuropathy in Children. J Neurol Neurosurg Psychiatry 27: 125–130.
5. MurrayTJ (1973) Congenital sensory neuropathy. Brain 96: 387–394.
6. AxelrodFB, Gold-von SimsonG (2007) Hereditary sensory and autonomic neuropathies: types II, III, and IV. Orphanet J Rare Dis 2: 39.
7. KurthI Hereditary Sensory and Autonomic Neuropathy Type II.
8. LafreniereRG, MacDonaldML, DubeMP, MacFarlaneJ, O'DriscollM, et al. (2004) Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the Study of Canadian Genetic Isolates. Am J Hum Genet 74: 1064–1073.
9. ShekarabiM, GirardN, RiviereJB, DionP, HouleM, et al. (2008) Mutations in the nervous system–specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II. J Clin Invest 118: 2496–2505.
10. XuB, EnglishJM, WilsbacherJL, StippecS, GoldsmithEJ, et al. (2000) WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 275: 16795–16801.
11. RotthierA, BaetsJ, De VriendtE, JacobsA, Auer-GrumbachM, et al. (2009) Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. Brain 132: 2699–2711.
12. ZambrowiczBP, AbuinA, Ramirez-SolisR, RichterLJ, PiggottJ, et al. (2003) Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci U S A 100: 14109–14114.
13. RinehartJ, MaksimovaYD, TanisJE, StoneKL, HodsonCA, et al. (2009) Sites of regulated phosphorylation that control K-Cl cotransporter activity. Cell 138: 525–536.
14. KahleKT, RinehartJ, de Los HerosP, LouviA, MeadeP, et al. (2005) WNK3 modulates transport of Cl- in and out of cells: implications for control of cell volume and neuronal excitability. Proc Natl Acad Sci U S A 102: 16783–16788.
15. ReynoldsA, BrusteinE, LiaoM, MercadoA, BabiloniaE, et al. (2008) Neurogenic role of the depolarizing chloride gradient revealed by global overexpression of KCC2 from the onset of development. J Neurosci 28: 1588–1597.
16. CoteS, DrapeauP (2012) Regulation of spinal interneuron differentiation by the paracrine action of glycine. Dev Neurobiol 72: 208–214.
17. KabashiE, ChampagneN, BrusteinE, DrapeauP (2010) In the swim of things: recent insights to neurogenetic disorders from zebrafish. Trends Genet 26: 373–381.
18. BandmannO, BurtonEA (2010) Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis 40: 58–65.
19. MathurP, GuoS (2010) Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiol Dis 40: 66–72.
20. KabashiE, BrusteinE, ChampagneN, DrapeauP (2011) Zebrafish models for the functional genomics of neurogenetic disorders. Biochim Biophys Acta 3: 335–345.
21. AanesH, WinataCL, LinCH, ChenJP, SrinivasanKG, et al. (2011) Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 21: 1328–1338.
22. KimmelCB, BallardWW, KimmelSR, UllmannB, SchillingTF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203: 253–310.
23. HarrisJA, ChengAG, CunninghamLL, MacDonaldG, RaibleDW, et al. (2003) Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol 4: 219–234.
24. GoldmanD, HankinM, LiZ, DaiX, DingJ (2001) Transgenic zebrafish for studying nervous system development and regeneration. Transgenic Res 10: 21–33.
25. GhysenA, Dambly-ChaudiereC (2007) The lateral line microcosmos. Genes Dev 21: 2118–2130.
26. OuHC, RaibleDW, RubelEW (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res 233: 46–53.
27. HaasP, GilmourD (2006) Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell 10: 673–680.
28. FiumelliH, BrinerA, PuskarjovM, BlaesseP, BelemBJ, et al. (2012) An Ion Transport-Independent Role for the Cation-Chloride Cotransporter KCC2 in Dendritic Spinogenesis In Vivo. Cereb Cortex 17: 17.
29. ZhangRW, WeiHP, XiaYM, DuJL (2010) Development of light response and GABAergic excitation-to-inhibition switch in zebrafish retinal ganglion cells. J Physiol 588: 2557–2569.
30. BrusteinE, DrapeauP (2005) Serotoninergic Modulation of Chloride Homeostasis during Maturation of the Locomotor Network in Zebrafish. The Journal of Neuroscience 25: 10607–10616.
31. BrusteinE, Saint-AmantL, BussRR, ChongM, McDearmidJR, et al. (2003) Steps during the development of the zebrafish locomotor network. J Physiol Paris 97: 77–86.
32. BrusteinE, DrapeauP (2005) Serotoninergic modulation of chloride homeostasis during maturation of the locomotor network in zebrafish. J Neurosci 25: 10607–10616.
33. HornZ, RingstedtT, BlaesseP, KailaK, HerleniusE (2010) Premature expression of KCC2 in embryonic mice perturbs neural development by an ion transport-independent mechanism. Eur J Neurosci 31: 2142–2155.
34. GauvainG, ChammaI, ChevyQ, CabezasC, IrinopoulouT, et al. (2011) The neuronal K-Cl cotransporter KCC2 influences postsynaptic AMPA receptor content and lateral diffusion in dendritic spines. Proc Natl Acad Sci U S A 108: 15474–15479.
35. LiH, KhirugS, CaiC, LudwigA, BlaesseP, et al. (2007) KCC2 interacts with the dendritic cytoskeleton to promote spine development. Neuron 56: 1019–1033.
36. SteinV, Hermans-BorgmeyerI, JentschTJ, HubnerCA (2004) Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride. J Comp Neurol 468: 57–64.
37. DelpireE (2000) Cation-Chloride Cotransporters in Neuronal Communication. News Physiol Sci 15: 309–312.
38. KanakaC, OhnoK, OkabeA, KuriyamaK, ItohT, et al. (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104: 933–946.
39. PayneJA, RiveraC, VoipioJ, KailaK (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26: 199–206.
40. HubnerCA, SteinV, Hermans-BorgmeyerI, MeyerT, BallanyiK, et al. (2001) Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30: 515–524.
41. PellegrinoC, GubkinaO, SchaeferM, BecqH, LudwigA, et al. (2011) Knocking down of the KCC2 in rat hippocampal neurons increases intracellular chloride concentration and compromises neuronal survival. J Physiol 589: 2475–2496.
42. GambaL, CubedoN, LutfallaG, GhysenA, Dambly-ChaudiereC (2010) Lef1 controls patterning and proliferation in the posterior lateral line system of zebrafish. Dev Dyn 239: 3163–3171.
43. MizoguchiT, TogawaS, KawakamiK, ItohM (2011) Neuron and sensory epithelial cell fate is sequentially determined by Notch signaling in zebrafish lateral line development. J Neurosci 31: 15522–15530.
44. LaguerreL, GhysenA, Dambly-ChaudiereC (2009) Mitotic patterns in the migrating lateral line cells of zebrafish embryos. Dev Dyn 238: 1042–1051.
45. SunX, GaoL, YuRK, ZengG (2006) Down-regulation of WNK1 protein kinase in neural progenitor cells suppresses cell proliferation and migration. J Neurochem 99: 1114–1121.
46. RiveraC, VoipioJ, Thomas-CrusellsJ, LiH, EmriZ, et al. (2004) Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24: 4683–4691.
47. LudwigA, UvarovP, SoniS, Thomas-CrusellsJ, AiraksinenMS, et al. (2011) Early growth response 4 mediates BDNF induction of potassium chloride cotransporter 2 transcription. J Neurosci 31: 644–649.
48. WakeH, WatanabeM, MoorhouseAJ, KanematsuT, HoribeS, et al. (2007) Early changes in KCC2 phosphorylation in response to neuronal stress result in functional downregulation. J Neurosci 27: 1642–1650.
49. DenkerSP, BarberDL (2002) Ion transport proteins anchor and regulate the cytoskeleton. Curr Opin Cell Biol 14: 214–220.
50. RiviereJB, RamalingamS, LavastreV, ShekarabiM, HolbertS, et al. (2011) KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am J Hum Genet 89: 219–230.
51. ShekarabiM, Salin-CantegrelA, LaganiereJ, GaudetR, DionP, et al. (2011) Cellular expression of the K+-Cl− cotransporter KCC3 in the central nervous system of mouse. Brain Res 16: 15–26.
52. HowardHC, MountDB, RochefortD, ByunN, DupreN, et al. (2002) The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nat Genet 32: 384–392.
53. Salin-CantegrelA, RiviereJB, ShekarabiM, RasheedS, DacalS, et al. (2011) Transit defect of potassium-chloride Co-transporter 3 is a major pathogenic mechanism in hereditary motor and sensory neuropathy with agenesis of the corpus callosum. J Biol Chem 286: 28456–28465.
54. WesterfieldM (1995) The Zebrafish Book : A Guide for the Laboratory Use of Zebrafish (Danio rerio).
55. JowettT (2001) Double in situ hybridization techniques in zebrafish. Methods 23: 345–358.
56. CollazoA, FraserSE, MabeePM (1994) A dual embryonic origin for vertebrate mechanoreceptors. Science 264: 426–430.
57. LedentV (2002) Postembryonic development of the posterior lateral line in zebrafish. Development 129: 597–604.
58. HernandezPP, MorenoV, OlivariFA, AllendeML (2006) Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hear Res 213: 1–10.
59. AshworthR, BolsoverSR (2002) Spontaneous activity-independent intracellular calcium signals in the developing spinal cord of the zebrafish embryo. Brain Res Dev Brain Res 139: 131–137.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 1
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Function and Regulation of , a Gene Implicated in Autism and Human Evolution
- Comprehensive Methylome Characterization of and at Single-Base Resolution
- Susceptibility Loci Associated with Specific and Shared Subtypes of Lymphoid Malignancies
- An Insertion in 5′ Flanking Region of Causes Blue Eggshell in the Chicken