Telomerase-Null Survivor Screening Identifies Novel Telomere Recombination Regulators
Telomeres are protein–DNA structures found at the ends of linear chromosomes and are crucial for genome integrity. Telomeric DNA length is primarily maintained by the enzyme telomerase. Cells lacking telomerase will undergo senescence when telomeres become critically short. In Saccharomyces cerevisiae, a very small percentage of cells lacking telomerase can remain viable by lengthening telomeres via two distinct homologous recombination pathways. These “survivor” cells are classified as either Type I or Type II, with each class of survivor possessing distinct telomeric DNA structures and genetic requirements. To elucidate the regulatory pathways contributing to survivor generation, we knocked out the telomerase RNA gene TLC1 in 280 telomere-length-maintenance (TLM) gene mutants and examined telomere structures in post-senescent survivors. We uncovered new functional roles for 10 genes that affect the emerging ratio of Type I versus Type II survivors and 22 genes that are required for Type II survivor generation. We further verified that Pif1 helicase was required for Type I recombination and that the INO80 chromatin remodeling complex greatly affected the emerging frequency of Type I survivors. Finally, we found the Rad6-mediated ubiquitination pathway and the KEOPS complex were required for Type II recombination. Our data provide an independent line of evidence supporting the idea that these genes play important roles in telomere dynamics.
Vyšlo v časopise:
Telomerase-Null Survivor Screening Identifies Novel Telomere Recombination Regulators. PLoS Genet 9(1): e32767. doi:10.1371/journal.pgen.1003208
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003208
Souhrn
Telomeres are protein–DNA structures found at the ends of linear chromosomes and are crucial for genome integrity. Telomeric DNA length is primarily maintained by the enzyme telomerase. Cells lacking telomerase will undergo senescence when telomeres become critically short. In Saccharomyces cerevisiae, a very small percentage of cells lacking telomerase can remain viable by lengthening telomeres via two distinct homologous recombination pathways. These “survivor” cells are classified as either Type I or Type II, with each class of survivor possessing distinct telomeric DNA structures and genetic requirements. To elucidate the regulatory pathways contributing to survivor generation, we knocked out the telomerase RNA gene TLC1 in 280 telomere-length-maintenance (TLM) gene mutants and examined telomere structures in post-senescent survivors. We uncovered new functional roles for 10 genes that affect the emerging ratio of Type I versus Type II survivors and 22 genes that are required for Type II survivor generation. We further verified that Pif1 helicase was required for Type I recombination and that the INO80 chromatin remodeling complex greatly affected the emerging frequency of Type I survivors. Finally, we found the Rad6-mediated ubiquitination pathway and the KEOPS complex were required for Type II recombination. Our data provide an independent line of evidence supporting the idea that these genes play important roles in telomere dynamics.
Zdroje
1. McEachernMJ, KrauskopfA, BlackburnEH (2000) Telomeres and their control. Annu Rev Genet 34: 331–358.
2. WellingerRJ, WolfAJ, ZakianVA (1993) Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 72: 51–60.
3. GreiderCW, BlackburnEH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405–413.
4. LundbladV, BlackburnEH (1993) An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73: 347–360.
5. TengSC, ZakianVA (1999) Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19: 8083–8093.
6. LingnerJ, CechTR, HughesTR, LundbladV (1997) Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci U S A 94: 11190–11195.
7. SingerMS, GottschlingDE (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266: 404–409.
8. ChenXF, MengFL, ZhouJQ (2009) Telomere recombination accelerates cellular aging in Saccharomyces cerevisiae. PLoS Genet 5: e1000535 doi:10.1371/journal.pgen.1000535.
9. ShoreD, BianchiA (2009) Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J 28: 2309–2322.
10. BryanTM, ReddelRR (1997) Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur J Cancer 33: 767–773.
11. NeumannAA, ReddelRR (2002) Telomere maintenance and cancer – look, no telomerase. Nat Rev Cancer 2: 879–884.
12. LundbladV, SzostakJW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57: 633–643.
13. LendvayTS, MorrisDK, SahJ, BalasubramanianB, LundbladV (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144: 1399–1412.
14. McEachernMJ, HaberJE (2006) Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75: 111–135.
15. LeS, MooreJK, HaberJE, GreiderCW (1999) RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152: 143–152.
16. ChenYB, YangCP, LiRX, ZengR, ZhouJQ (2005) Def1p is involved in telomere maintenance in budding yeast. J Biol Chem 280: 24784–24791.
17. GrandinN, CharbonneauM (2003) Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells. Mol Cell Biol 23: 9162–9177.
18. MengFL, ChenXF, HuY, TangHB, DangW, et al. (2010) Sua5p is required for telomere recombination in Saccharomyces cerevisiae. Cell Res 20: 495–498.
19. LeeJY, MogenJL, ChavezA, JohnsonFB (2008) Sgs1 RecQ helicase inhibits survival of Saccharomyces cerevisiae cells lacking telomerase and homologous recombination. J Biol Chem 283: 29847–29858.
20. PikeBL, HeierhorstJ (2007) Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeres. Mol Cell Biol 27: 6532–6545.
21. TsaiYL, TsengSF, ChangSH, LinCC, TengSC (2002) Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination. Mol Cell Biol 22: 5679–5687.
22. TengSC, ChangJ, McCowanB, ZakianVA (2000) Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6: 947–952.
23. GatbontonT, ImbesiM, NelsonM, AkeyJM, RuderferDM, et al. (2006) Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2: e35 doi:10.1371/journal.pgen.0020035.
24. MengFL, HuY, ShenN, TongXJ, WangJ, et al. (2009) Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication. Embo J 28: 1466–1478.
25. TsukamotoY, MitsuokaC, TerasawaM, OgawaH, OgawaT (2005) Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination. Mol Biol Cell 16: 597–608.
26. AskreeSH, YehudaT, SmolikovS, GurevichR, HawkJ, et al. (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 101: 8658–8663.
27. AzamM, LeeJY, AbrahamV, ChanouxR, SchoenlyKA, et al. (2006) Evidence that the S.cerevisiae Sgs1 protein facilitates recombinational repair of telomeres during senescence. Nucleic Acids Res 34: 506–516.
28. BertuchAA, LundbladV (2004) EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae. Genetics 166: 1651–1659.
29. DowneyM, HoulsworthR, MaringeleL, RollieA, BrehmeM, et al. (2006) A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Cell 124: 1155–1168.
30. HayashiN, MurakamiS (2002) STM1, a gene which encodes a guanine quadruplex binding protein, interacts with CDC13 in Saccharomyces cerevisiae. Mol Genet Genomics 267: 806–813.
31. PangTL, WangCY, HsuCL, ChenMY, LinJJ (2003) Exposure of Single-stranded Telomeric DNA Causes G2/M Cell Cycle Arrest in Saccharomyces cerevisiae. J Biol Chem 278: 9318–9321.
32. ToogunOA, DezwaanDC, FreemanBC (2008) The hsp90 molecular chaperone modulates multiple telomerase activities. Mol Cell Biol 28: 457–467.
33. YorkSJ, ArmbrusterBN, GreenwellP, PetesTD, YorkJD (2005) Inositol diphosphate signaling regulates telomere length. J Biol Chem 280: 4264–4269.
34. YuEY, Steinberg-NeifachO, DandjinouAT, KangF, MorrisonAJ, et al. (2007) Regulation of telomere structure and functions by subunits of the INO80 chromatin remodeling complex. Mol Cell Biol 27: 5639–5649.
35. ZhouJ, MonsonEK, TengSC, SchulzVP, ZakianVA (2000) Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 289: 771–774.
36. LahayeA, StahlH, Thines-SempouxD, FouryF (1991) PIF1: a DNA helicase in yeast mitochondria. Embo J 10: 997–1007.
37. ChangM, DittmarJC, RothsteinR (2011) Long telomeres are preferentially extended during recombination-mediated telomere maintenance. Nat Struct Mol Biol 18: 451–456.
38. BaoY, ShenX (2011) SnapShot: Chromatin remodeling: INO80 and SWR1. Cell 144: 158–e152, 158-158, e152.
39. BouleJB, ZakianVA (2007) The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res 35: 5809–5818.
40. SchulzVP, ZakianVA (1994) The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76: 145–155.
41. ChengX, DunawayS, IvessaAS (2007) The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA. Mitochondrion 7: 211–222.
42. FouryF, DyckEV (1985) A PIF-dependent recombinogenic signal in the mitochondrial DNA of yeast. Embo J 4: 3525–3530.
43. Van DyckE, FouryF, StillmanB, BrillSJ (1992) A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. Embo J 11: 3421–3430.
44. BouleJB, VegaLR, ZakianVA (2005) The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438: 57–61.
45. BuddME, ReisCC, SmithS, MyungK, CampbellJL (2006) Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol 26: 2490–2500.
46. PikeJE, BurgersPM, CampbellJL, BambaraRA (2009) Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J Biol Chem 284: 25170–25180.
47. IvessaAS, ZhouJQ, ZakianVA (2000) The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100: 479–489.
48. RibeyreC, LopesJ, BouleJB, PiazzaA, GuedinA, et al. (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5: e1000475 doi:10.1371/journal.pgen.1000475.
49. PaeschkeK, CapraJA, ZakianVA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145: 678–691.
50. DewarJM, LydallD (2010) Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. EMBO J 29: 4020–4034.
51. SingletonMR, DillinghamMS, WigleyDB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76: 23–50.
52. ShiratoriA, ShibataT, ArisawaM, HanaokaF, MurakamiY, et al. (1999) Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis. Yeast 15: 219–253.
53. HuangP, PrydeFE, LesterD, MaddisonRL, BortsRH, et al. (2001) SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol 11: 125–129.
54. GrandinN, CharbonneauM (2003) The Rad51 pathway of telomerase-independent maintenance of telomeres can amplify TG1–3 sequences in yku and cdc13 mutants of Saccharomyces cerevisiae. Mol Cell Biol 23: 3721–3734.
55. NugentCI, BoscoG, RossLO, EvansSK, SalingerAP, et al. (1998) Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr Biol 8: 657–660.
56. TongXJ, LiQJ, DuanYM, LiuNN, ZhangML, et al. (2011) Est1 protects telomeres and inhibits subtelomeric y'-element recombination. Mol Cell Biol 31: 1263–1274.
57. GameJC, ChernikovaSB (2009) The role of RAD6 in recombinational repair, checkpoints and meiosis via histone modification. DNA Repair (Amst) 8: 470–482.
58. RobzykK, RechtJ, OsleyMA (2000) Rad6-dependent ubiquitination of histone H2B in yeast. Science 287: 501–504.
59. HwangWW, VenkatasubrahmanyamS, IanculescuAG, TongA, BooneC, et al. (2003) A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11: 261–266.
60. KroganNJ, DoverJ, KhorramiS, GreenblattJF, SchneiderJ, et al. (2002) COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277: 10753–10755.
61. HoegeC, PfanderB, MoldovanGL, PyrowolakisG, JentschS (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135–141.
62. RaoH, UhlmannF, NasmythK, VarshavskyA (2001) Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410: 955–959.
63. MaoDY, NeculaiD, DowneyM, OrlickyS, HaffaniYZ, et al. (2008) Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine. Mol Cell 32: 259–275.
64. Ben-AroyaS, CoombesC, KwokT, O'DonnellKA, BoekeJD, et al. (2008) Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol Cell 30: 248–258.
65. Kisseleva-RomanovaE, LopreiatoR, Baudin-BaillieuA, RousselleJC, IlanL, et al. (2006) Yeast homolog of a cancer-testis antigen defines a new transcription complex. Embo J 25: 3576–3585.
66. SrinivasanM, MehtaP, YuY, PrugarE, KooninEV, et al. (2011) The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. Embo J 30: 873–881.
67. HeckerA, LopreiatoR, GrailleM, CollinetB, ForterreP, et al. (2008) Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex. Embo J 27: 2340–2351.
68. BirrellGW, GiaeverG, ChuAM, DavisRW, BrownJM (2001) A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc Natl Acad Sci U S A 98: 12608–12613.
69. AndersenMP, NelsonZW, HetrickED, GottschlingDE (2008) A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae. Genetics 179: 1179–1195.
70. LiF, DongJ, PanX, OumJH, BoekeJD, et al. (2008) Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates. Mol Cell 30: 325–335.
71. WestmorelandTJ, WickramasekaraSM, GuoAY, SelimAL, WinsorTS, et al. (2009) Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in Saccharomyces cerevisiae. PLoS ONE 4: e5830 doi:10.1371/journal.pone.0005830.
72. KleinHL (1997) RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147: 1533–1543.
73. AguileraA, KleinHL (1988) Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119: 779–790.
74. LydeardJR, JainS, YamaguchiM, HaberJE (2007) Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448: 820–823.
75. VegaLR, MateyakMK, ZakianVA (2003) Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 4: 948–959.
76. JosephIS, KumariA, BhattacharyyaMK, GaoH, LiB, et al. (2010) An mre11 mutation that promotes telomere recombination and an efficient bypass of senescence. Genetics 185: 761–770.
77. LusserA, KadonagaJT (2003) Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25: 1192–1200.
78. KatoY, KawasakiH, OhyamaY, MorishitaT, IwasakiH, et al. (2011) Cell polarity in Saccharomyces cerevisiae depends on proper localization of the Bud9 landmark protein by the EKC/KEOPS complex. Genetics 188: 871–882.
79. El YacoubiB, LyonsB, CruzY, ReddyR, NordinB, et al. (2009) The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA. Nucleic Acids Res 37: 2894–2909.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 1
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Function and Regulation of , a Gene Implicated in Autism and Human Evolution
- Comprehensive Methylome Characterization of and at Single-Base Resolution
- Susceptibility Loci Associated with Specific and Shared Subtypes of Lymphoid Malignancies
- An Insertion in 5′ Flanking Region of Causes Blue Eggshell in the Chicken