Unlocking the Bottleneck in Forward Genetics Using Whole-Genome Sequencing and Identity by Descent to Isolate Causative Mutations
Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis.
Vyšlo v časopise:
Unlocking the Bottleneck in Forward Genetics Using Whole-Genome Sequencing and Identity by Descent to Isolate Causative Mutations. PLoS Genet 9(1): e32767. doi:10.1371/journal.pgen.1003219
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003219
Souhrn
Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis.
Zdroje
1. JusticeMJ, NoveroskeJK, WeberJS, ZhengB, BradleyA (1999) Mouse ENU mutagenesis. Hum Mol Genet 8: 1955–1963.
2. Acevedo-ArozenaA, WellsS, PotterP, KellyM, CoxRD, et al. (2008) ENU mutagenesis, a way forward to understand gene function. Annual review of genomics and human genetics 9: 49–69.
3. HoebeK, BeutlerB (2005) Unraveling innate immunity using large scale N-ethyl-N-nitrosourea mutagenesis. Tissue antigens 65: 395–401.
4. PapathanasiouP, GoodnowCC (2005) Connecting mammalian genome with phenome by ENU mouse mutagenesis: gene combinations specifying the immune system. Annu Rev Genet 39: 241–262.
5. WansleebenC, van GurpL, FeitsmaH, KroonC, RieterE, et al. (2011) An ENU-mutagenesis screen in the mouse: identification of novel developmental gene functions. PLoS ONE 6: e19357 doi:10.1371/journal.pone.0019357.
6. SunM, MondalK, PatelV, HornerVL, LongAB, et al. (2012) Multiplex Chromosomal Exome Sequencing Accelerates Identification of ENU-Induced Mutations in the Mouse. G3 (Bethesda, Md) 2: 143–150.
7. ArnoldCN, XiaY, LinP, RossC, SchwanderM, et al. (2011) Rapid identification of a disease allele in mouse through whole genome sequencing and bulk segregation analysis. Genetics 187: 633–641.
8. FairfieldH, GilbertGJ, BarterM, CorriganRR, CurtainM, et al. (2011) Mutation discovery in mice by whole exome sequencing. Genome Biol 12: R86.
9. LeshchinerI, AlexaK, KelseyP, AdzhubeiI, Austin-TseCA, et al. (2012) Mutation mapping and identification by whole-genome sequencing. Genome Res
10. LanderES, GreenP (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A 84: 2363–2367.
11. VerhagenAM, WallaceME, GoradiaA, JonesSA, CroomHA, et al. (2009) A kinase-dead allele of Lyn attenuates autoimmune disease normally associated with Lyn deficiency. J Immunol 182: 2020–2029.
12. HoshinoK, TakeuchiO, KawaiT, SanjoH, OgawaT, et al. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162: 3749–3752.
13. AdzhubeiIA, SchmidtS, PeshkinL, RamenskyVE, GerasimovaA, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: 248–249.
14. FavorJ, SundM, Neuhauser-KlausA, EhlingUH (1990) A dose-response analysis of ethylnitrosourea-induced recessive specific-locus mutations in treated spermatogonia of the mouse. Mutation research 231: 47–54.
15. LewisSE, BarnettLB, SadlerBM, ShelbyMD (1991) ENU mutagenesis in the mouse electrophoretic specific-locus test, 1. Dose-response relationship of electrophoretically-detected mutations arising from mouse spermatogonia treated with ethylnitrosourea. Mutation research 249: 311–315.
16. JusticeMJ, CarpenterDA, FavorJ, Neuhauser-KlausA, Hrabe de AngelisM, et al. (2000) Effects of ENU dosage on mouse strains. Mamm Genome 11: 484–488.
17. RussellWL, KellyEM, HunsickerPR, BanghamJW, MadduxSC, et al. (1979) Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Natl Acad Sci U S A 76: 5818–5819.
18. BeierDR (2000) Sequence-based analysis of mutagenized mice. Mamm Genome 11: 594–597.
19. CoghillEL, HugillA, ParkinsonN, DavisonC, GlenisterP, et al. (2002) A gene-driven approach to the identification of ENU mutants in the mouse. Nat Genet 30: 255–256.
20. QuwailidMM, HugillA, DearN, VizorL, WellsS, et al. (2004) A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm Genome 15: 585–591.
21. ConcepcionD, SeburnKL, WenG, FrankelWN, HamiltonBA (2004) Mutation rate and predicted phenotypic target sizes in ethylnitrosourea-treated mice. Genetics 168: 953–959.
22. TakahasiKR, SakurabaY, GondoY (2007) Mutational pattern and frequency of induced nucleotide changes in mouse ENU mutagenesis. BMC Mol Biol 8: 52.
23. NolanPM, HugillA, CoxRD (2002) ENU mutagenesis in the mouse: application to human genetic disease. Briefings in functional genomics & proteomics 1: 278–289.
24. BarbaricI, WellsS, RussA, DearTN (2007) Spectrum of ENU-induced mutations in phenotype-driven and gene-driven screens in the mouse. Environmental and Molecular Mutagenesis 48: 124–142.
25. SakurabaY, SezutsuH, TakahasiKR, TsuchihashiK, IchikawaR, et al. (2005) Molecular characterization of ENU mouse mutagenesis and archives. Biochem Biophys Res Commun 336: 609–616.
26. BhanotOS, GrevattPC, DonahueJM, GabrielidesCN, SolomonJJ (1992) In vitro DNA replication implicates O2-ethyldeoxythymidine in transversion mutagenesis by ethylating agents. Nucleic Acids Res 20: 587–594.
27. KleinJC, BleekerMJ, LutgerinkJT, van DijkWJ, BruggheHF, et al. (1990) Use of shuttle vectors to study the molecular processing of defined carcinogen-induced DNA damage: mutagenicity of single O4-ethylthymine adducts in HeLa cells. Nucleic Acids Res 18: 4131–4137.
28. WaterstonRH, Lindblad-TohK, BirneyE, RogersJ, AbrilJF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.
29. SmithKR, BromheadCJ, HildebrandMS, ShearerAE, LockhartPJ, et al. (2011) Reducing the exome search space for mendelian diseases using genetic linkage analysis of exome genotypes. Genome Biol 12: R85.
30. GuergueltchevaV, AzmanovDN, AngelichevaD, SmithKR, ChamovaT, et al. (2012) Autosomal-Recessive Congenital Cerebellar Ataxia Is Caused by Mutations in Metabotropic Glutamate Receptor 1. The American Journal of Human Genetics 91: 553–564.
31. AbecasisGR, ChernySS, CooksonWO, CardonLR (2001) Merlin-rapid analysis of dense genetic maps using sparse gene ow trees. Nat Genet 30: 97–101.
32. ChahrourMH, YuTW, LimET, AtamanB, CoulterME, et al. (2012) Whole-Exome Sequencing and Homozygosity Analysis Implicate Depolarization-Regulated Neuronal Genes in Autism. PLoS Genet 8: e1002635 doi:10.1371/journal.pgen.1002635.
33. RodelspergerC, KrawitzP, BauerS, HechtJ, BighamAW, et al. (2011) Identity-by-descent filtering of exome sequence data for disease-gene identification in autosomal recessive disorders. Bioinformatics 27: 829–836.
34. RoachJC, GlusmanG, SmitAFA, HuffCD, HubleyR, et al. (2010) Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing. Science 328: 636–639.
35. MasuyaH, SezutsuH, SakurabaY, SagaiT, HosoyaM, et al. (2007) A series of ENU-induced single-base substitutions in a long-range cis-element altering Sonic hedgehog expression in the developing mouse limb bud. Genomics 89: 207–214.
36. AndrewsTD, WhittleB, FieldMA, BalakishnanB, ZhangY, et al. (2012) Massively parallel sequencing of the mouse exome to accurately identify rare, induced mutations: an immediate source for thousands of new mouse models. Open biology 2: 120061.
37. GudbjartssonDF, ThorvaldssonT, KongA, GunnarssonG, IngolfsdottirA (2005) Allegro version 2. Nat Genet 37: 1015–1016.
38. BrunschwigH, LeviL, Ben-DavidE, WilliamsRW, YakirB, et al. (2012) Fine-Scale Maps of Recombination Rates and Hotspots in the Mouse Genome. Genetics 191: 757–764.
39. CoxA, Ackert-BicknellCL, DumontBL, DingY, BellJT, et al. (2009) A new standard genetic map for the laboratory mouse. Genetics 182: 1335–1344.
40. NelmsKA, GoodnowCC (2001) Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15: 409–418.
41. LunterG, GoodsonM (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21: 936–939.
42. WangK, LiM, HakonarsonH (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38: e164.
43. QuinlanAR, HallIM (2010) BEDTools: a exible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842.
44. RabinerLR (1989) A Tutorial on Hidden Markov-Models and Selected Applications in Speech Recognition. Proceedings of the Ieee 77: 257–286.
45. MarkusB, BirkOS, GeigerD (2011) Integration of SNP genotyping confidence scores in IBD inference. Bioinformatics 27: 2880–2887.
46. WangJR, de VillenaFPM, LawsonHA, CheverudJM, ChurchillGA, et al. (2012) Imputation of Single-Nucleotide Polymorphisms in Inbred Mice Using Local Phylogeny. Genetics 190: 449–458.
47. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 1
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Function and Regulation of , a Gene Implicated in Autism and Human Evolution
- Comprehensive Methylome Characterization of and at Single-Base Resolution
- Susceptibility Loci Associated with Specific and Shared Subtypes of Lymphoid Malignancies
- An Insertion in 5′ Flanking Region of Causes Blue Eggshell in the Chicken