Cooperation between RUNX1-ETO9a and Novel Transcriptional Partner KLF6 in Upregulation of in Acute Myeloid Leukemia
Fusion protein RUNX1-ETO (AML1-ETO, RUNX1-RUNX1T1) is expressed as the result of the 8q22;21q22 translocation [t(8;21)], which is one of the most common chromosomal abnormalities found in acute myeloid leukemia. RUNX1-ETO is thought to promote leukemia development through the aberrant regulation of RUNX1 (AML1) target genes. Repression of these genes occurs via the recruitment of the corepressors N-COR and SMRT due to their interaction with ETO. Mechanisms of RUNX1-ETO target gene upregulation remain less well understood. Here we show that RUNX1-ETO9a, the leukemogenic alternatively spliced transcript expressed from t(8;21), upregulates target gene Alox5, which is a gene critically required for the promotion of chronic myeloid leukemia development by BCR-ABL. Loss of Alox5 expression reduces activity of RUNX1-ETO9a, MLL-AF9 and PML-RARα in vitro. However, Alox5 is not essential for the induction of leukemia by RUNX1-ETO9a in vivo. Finally, we demonstrate that the upregulation of Alox5 by RUNX1-ETO9a occurs via the C2H2 zinc finger transcription factor KLF6, a protein required for early hematopoiesis and yolk sac development. Furthermore, KLF6 is specifically upregulated by RUNX1-ETO in human leukemia cells. This identifies KLF6 as a novel mediator of t(8;21) target gene regulation, providing a new mechanism for RUNX1-ETO transcriptional control.
Vyšlo v časopise:
Cooperation between RUNX1-ETO9a and Novel Transcriptional Partner KLF6 in Upregulation of in Acute Myeloid Leukemia. PLoS Genet 9(10): e32767. doi:10.1371/journal.pgen.1003765
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003765
Souhrn
Fusion protein RUNX1-ETO (AML1-ETO, RUNX1-RUNX1T1) is expressed as the result of the 8q22;21q22 translocation [t(8;21)], which is one of the most common chromosomal abnormalities found in acute myeloid leukemia. RUNX1-ETO is thought to promote leukemia development through the aberrant regulation of RUNX1 (AML1) target genes. Repression of these genes occurs via the recruitment of the corepressors N-COR and SMRT due to their interaction with ETO. Mechanisms of RUNX1-ETO target gene upregulation remain less well understood. Here we show that RUNX1-ETO9a, the leukemogenic alternatively spliced transcript expressed from t(8;21), upregulates target gene Alox5, which is a gene critically required for the promotion of chronic myeloid leukemia development by BCR-ABL. Loss of Alox5 expression reduces activity of RUNX1-ETO9a, MLL-AF9 and PML-RARα in vitro. However, Alox5 is not essential for the induction of leukemia by RUNX1-ETO9a in vivo. Finally, we demonstrate that the upregulation of Alox5 by RUNX1-ETO9a occurs via the C2H2 zinc finger transcription factor KLF6, a protein required for early hematopoiesis and yolk sac development. Furthermore, KLF6 is specifically upregulated by RUNX1-ETO in human leukemia cells. This identifies KLF6 as a novel mediator of t(8;21) target gene regulation, providing a new mechanism for RUNX1-ETO transcriptional control.
Zdroje
1. National Cancer Institute (2013) Adult Acute Myeloid Leukemia Treatment. http://www.cancer.gov/cancertopics/pdq/treatment/adultAML Accessed April 3, 2013.
2. RoweD, CotterillSJ, RossFM, BunyanDJ, VickersSJ, et al. (2000) Cytogenetically cryptic AML1-ETO and CBF beta-MYH11 gene rearrangements: incidence in 412 cases of acute myeloid leukaemia. Br J Haematol 111: 1051–1056.
3. Groupe Francais de Cytogenetique Hematologique (1990) Acute myelogenous leukemia with an 8;21 translocation. A report on 148 cases from the Groupe Francais de Cytogenetique Hematologique. Cancer Genet Cytogenet 44: 169–179.
4. NuciforaG, RowleyJD (1995) AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood 86: 1–14.
5. LangabeerSE, WalkerH, RogersJR, BurnettAK, WheatleyK, et al. (1997) Incidence of AML1/ETO fusion transcripts in patients entered into the MRC AML trials. MRC Adult Leukaemia Working Party. Br J Haematol 99: 925–928.
6. RegeK, SwansburyGJ, AtraAA, HortonC, MinT, et al. (2000) Disease features in acute myeloid leukemia with t(8;21)(q22;q22). Influence of age, secondary karyotype abnormalities, CD19 status, and extramedullary leukemia on survival. Leuk Lymphoma 40: 67–77.
7. PetersonLF, BoyapatiA, AhnEY, BiggsJR, OkumuraAJ, et al. (2007) Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood 110: 799–805.
8. MullerAM, DuqueJ, ShizuruJA, LubbertM (2008) Complementing mutations in core binding factor leukemias: from mouse models to clinical applications. Oncogene 27: 5759–5773.
9. MulloyJC, CammengaJ, BerguidoFJ, WuK, ZhouP, et al. (2003) Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood 102: 4369–4376.
10. YanM, KanbeE, PetersonLF, BoyapatiA, MiaoY, et al. (2006) A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 12: 945–949.
11. KozuT, FukuyamaT, YamamiT, AkagiK, KanekoY (2005) MYND-less splice variants of AML1-MTG8 (RUNX1-CBFA2T1) are expressed in leukemia with t(8;21). Genes Chromosomes Cancer 43: 45–53.
12. GelmettiV, ZhangJ, FanelliM, MinucciS, PelicciPG, et al. (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18: 7185–7191.
13. LutterbachB, WestendorfJJ, LinggiB, PattenA, MoniwaM, et al. (1998) ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 18: 7176–7184.
14. WangJ, HoshinoT, RednerRL, KajigayaS, LiuJM (1998) ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci U S A 95: 10860–10865.
15. HinesR, BoyapatiA, ZhangDE (2007) Cell type dependent regulation of multidrug resistance-1 gene expression by AML1-ETO. Blood Cells Mol Dis 39: 297–306.
16. PtasinskaA, AssiSA, MannariD, JamesSR, WilliamsonD, et al. (2012) Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia 26: 1829–1841.
17. MartensJH, MandoliA, SimmerF, WierengaBJ, SaeedS, et al. (2012) ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood 120: 4038–4048.
18. LoMC, PetersonLF, YanM, CongX, JinF, et al. (2012) Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. Blood 120: 1473–1484.
19. WangL, GuralA, SunXJ, ZhaoX, PernaF, et al. (2011) The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 333: 765–769.
20. ShiaWJ, OkumuraAJ, YanM, SarkeshikA, LoMC, et al. (2012) PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood 119: 4953–4962.
21. TongWG, DingXZ, TalamontiMS, BellRH, AdrianTE (2005) LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways. Biochem Biophys Res Commun 335: 949–956.
22. KimEY, SeoJM, ChoKJ, KimJH (2010) Ras-induced invasion and metastasis are regulated by a leukotriene B4 receptor BLT2-linked pathway. Oncogene 29: 1167–1178.
23. KimGY, LeeJW, ChoSH, SeoJM, KimJH (2009) Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscler Thromb Vasc Biol 29: 915–920.
24. MezhybovskaM, WikstromK, OhdJF, SjolanderA (2006) The inflammatory mediator leukotriene D4 induces beta-catenin signaling and its association with antiapoptotic Bcl-2 in intestinal epithelial cells. J Biol Chem 281: 6776–6784.
25. RiouxN, CastonguayA (1998) Inhibitors of lipoxygenase: a new class of cancer chemopreventive agents. Carcinogenesis 19: 1393–1400.
26. HennigR, VenturaJ, SegersvardR, WardE, DingXZ, et al. (2005) LY293111 improves efficacy of gemcitabine therapy on pancreatic cancer in a fluorescent orthotopic model in athymic mice. Neoplasia 7: 417–425.
27. PidgeonGP, LysaghtJ, KrishnamoorthyS, ReynoldsJV, O'ByrneK, et al. (2007) Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev 26: 503–524.
28. ChungJW, KimGY, MunYC, AhnJY, SeongCM, et al. (2005) Leukotriene B4 pathway regulates the fate of the hematopoietic stem cells. Exp Mol Med 37: 45–50.
29. ChenY, HuY, ZhangH, PengC, LiS (2009) Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet 41: 783–792.
30. RaiKR, HollandJF, GlidewellOJ, WeinbergV, BrunnerK, et al. (1981) Treatment of acute myelocytic leukemia: a study by cancer and leukemia group B. Blood 58: 1203–1212.
31. RobozGJ (2012) Current treatment of acute myeloid leukemia. Curr Opin Oncol 24: 711–719.
32. GrimwadeD, HillsRK, MoormanAV, WalkerH, ChattersS, et al. (2010) Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116: 354–365.
33. MatsumotoN, KuboA, LiuH, AkitaK, LaubF, et al. (2006) Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Blood 107: 1357–1365.
34. ValkPJ, VerhaakRG, BeijenMA, ErpelinckCA, van Waalwijk van DoornKhosrovaniBarjesteh, et al. (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350: 1617–1628.
35. SilvermanES, LeL, BaronRM, HallockA, HjobergJ, et al. (2002) Cloning and functional analysis of the mouse 5-lipoxygenase promoter. Am J Respir Cell Mol Biol 26: 475–483.
36. Juven-GershonT, KadonagaJT (2010) Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339: 225–229.
37. ZhaoJL, AustenKF, LamBK (2000) Cell-specific transcription of leukotriene C(4) synthase involves a Kruppel-like transcription factor and Sp1. J Biol Chem 275: 8903–8910.
38. CaoZ, SunX, IcliB, WaraAK, FeinbergMW (2010) Role of Kruppel-like factors in leukocyte development, function, and disease. Blood 116: 4404–4414.
39. BotellaLM, Sanchez-ElsnerT, Sanz-RodriguezF, KojimaS, ShimadaJ, et al. (2002) Transcriptional activation of endoglin and transforming growth factor-beta signaling components by cooperative interaction between Sp1 and KLF6: their potential role in the response to vascular injury. Blood 100: 4001–4010.
40. WeiH, LiuX, XiongX, WangY, RaoQ, et al. (2008) AML1-ETO interacts with Sp1 and antagonizes Sp1 transactivity through RUNT domain. FEBS Lett 582: 2167–2172.
41. LiuY, ChenW, GaudetJ, CheneyMD, RoudaiaL, et al. (2007) Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO's activity. Cancer Cell 11: 483–497.
42. DekelverRC, YanM, AhnEY, ShiaWJ, SpeckNA, et al. (2013) Attenuation of AML1-ETO cellular dysregulation correlates with increased leukemogenic potential. Blood 121: 3714–7.
43. SwansburyGJ, SlaterR, BainBJ, MoormanAV, Secker-WalkerLM (1998) Hematological malignancies with t(9;11)(p21-22;q23)–a laboratory and clinical study of 125 cases. European 11q23 Workshop participants. Leukemia 12: 792–800.
44. GrignaniF, FagioliM, AlcalayM, LongoL, PandolfiPP, et al. (1994) Acute promyelocytic leukemia: from genetics to treatment. Blood 83: 10–25.
45. KuoYH, LandretteSF, HeilmanSA, PerratPN, GarrettL, et al. (2006) Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 9: 57–68.
46. de GuzmanCG, WarrenAJ, ZhangZ, GartlandL, EricksonP, et al. (2002) Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 22: 5506–5517.
47. TamWF, HahnelPS, SchulerA, LeeBH, OkabeR, et al. (2013) STAT5 is crucial to maintain leukemic stem cells in acute myelogenous leukemias induced by MOZ-TIF2. Cancer Res 73: 373–384.
48. PengC, ChenY, ShanY, ZhangH, GuoZ, et al. (2012) LSK derived LSK- cells have a high apoptotic rate related to survival regulation of hematopoietic and leukemic stem cells. PLoS One 7: e38614.
49. BenzC, CopleyMR, KentDG, WohrerS, CortesA, et al. (2012) Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10: 273–283.
50. PetersonLF, ZhangDE (2004) The 8;21 translocation in leukemogenesis. Oncogene 23: 4255–4262.
51. AhnEY, DekelverRC, LoMC, NguyenTA, MatsuuraS, et al. (2011) SON Controls Cell-Cycle Progression by Coordinated Regulation of RNA Splicing. Mol Cell 42: 185–198.
52. ChenXS, ShellerJR, JohnsonEN, FunkCD (1994) Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature 372: 179–182.
53. PetersonLF, WangY, LoMC, YanM, KanbeE, et al. (2007) The multi-functional cellular adhesion molecule CD44 is regulated by the 8;21 chromosomal translocation. Leukemia 21: 2010–2019.
54. MeyersS, DowningJR, HiebertSW (1993) Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 13: 6336–6345.
55. NarlaG, DifeoA, ReevesHL, SchaidDJ, HirshfeldJ, et al. (2005) A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res 65: 1213–1222.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Dominant Mutations in Identify the Mlh1-Pms1 Endonuclease Active Site and an Exonuclease 1-Independent Mismatch Repair Pathway
- Eleven Candidate Susceptibility Genes for Common Familial Colorectal Cancer
- The Histone H3 K27 Methyltransferase KMT6 Regulates Development and Expression of Secondary Metabolite Gene Clusters
- A Mutation in the Gene in Labrador Retrievers with Hereditary Nasal Parakeratosis (HNPK) Provides Insights into the Epigenetics of Keratinocyte Differentiation