#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Multiple Signaling Pathways Coordinate to Induce a Threshold Response in a Chordate Embryo


In animal development, secreted signaling molecules evoke all-or-none threshold responses of target gene transcription to specify cell fates. In the chordate Ciona intestinalis, the neural markers Otx and Nodal are induced at early embryonic stages by Fgf9/16/20 signaling. Here we show that three additional signaling molecules act negatively to generate a sharp expression boundary for neural genes. EphrinA signaling antagonizes FGF signaling by inhibiting ERK phosphorylation more strongly in epidermal cells than in neural cells, which accentuates differences in the strength of ERK activation. However, even weakly activated ERK activates Otx and Nodal transcription occasionally, probably because of the inherently stochastic nature of signal transduction processes and binding of transcription factors to target sequences. This occasional and undesirable activation of neural genes by weak residual ERK activity is directly repressed by Smad transcription factors activated by Admp and Gdf1/3-like signaling, further sharpening the differential responses of cells to FGF signaling. Thus, these signaling pathways coordinate to evoke a threshold response that delineates a sharp expression boundary.


Vyšlo v časopise: Multiple Signaling Pathways Coordinate to Induce a Threshold Response in a Chordate Embryo. PLoS Genet 9(10): e32767. doi:10.1371/journal.pgen.1003818
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003818

Souhrn

In animal development, secreted signaling molecules evoke all-or-none threshold responses of target gene transcription to specify cell fates. In the chordate Ciona intestinalis, the neural markers Otx and Nodal are induced at early embryonic stages by Fgf9/16/20 signaling. Here we show that three additional signaling molecules act negatively to generate a sharp expression boundary for neural genes. EphrinA signaling antagonizes FGF signaling by inhibiting ERK phosphorylation more strongly in epidermal cells than in neural cells, which accentuates differences in the strength of ERK activation. However, even weakly activated ERK activates Otx and Nodal transcription occasionally, probably because of the inherently stochastic nature of signal transduction processes and binding of transcription factors to target sequences. This occasional and undesirable activation of neural genes by weak residual ERK activity is directly repressed by Smad transcription factors activated by Admp and Gdf1/3-like signaling, further sharpening the differential responses of cells to FGF signaling. Thus, these signaling pathways coordinate to evoke a threshold response that delineates a sharp expression boundary.


Zdroje

1. RogersKW, SchierAF (2011) Morphogen gradients: from generation to interpretation. Annu Rev Cell Dev Biol 27: 377–407.

2. AsheHL, BriscoeJ (2006) The interpretation of morphogen gradients. Development 133: 385–394.

3. DrieverW, Nusslein-VolhardC (1988) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54: 95–104.

4. ChenH, XuZ, MeiC, YuD, SmallS (2012) A system of repressor gradients spatially organizes the boundaries of Bicoid-dependent target genes. Cell 149: 618–629.

5. BriscoeJ, EricsonJ (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11: 43–49.

6. ChamberlainCE, JeongJ, GuoC, AllenBL, McMahonAP (2008) Notochord-derived Shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning. Development 135: 1097–1106.

7. BalaskasN, RibeiroA, PanovskaJ, DessaudE, SasaiN, et al. (2012) Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the vertebrate neural tube. Cell 148: 273–284.

8. LanderAD (2013) How cells know where they are. Science 339: 923–927.

9. HudsonC, LemaireP (2001) Induction of anterior neural fates in the ascidian Ciona intestinalis. Mech Dev 100: 189–203.

10. ImaiKS, HinoK, YagiK, SatohN, SatouY (2004) Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131: 4047–4058.

11. HudsonC, YasuoH (2005) Patterning across the ascidian neural plate by lateral Nodal signalling sources. Development 132: 1199–1210.

12. TassyO, DaianF, HudsonC, BertrandV, LemaireP (2006) A quantitative approach to the study of cell shapes and interactions during early chordate embryogenesis. Curr Biol 16: 345–358.

13. ImaiKS, LevineM, SatohN, SatouY (2006) Regulatory blueprint for a chordate embryo. Science 312: 1183–1187.

14. HudsonC, BaM, RouviereC, YasuoH (2011) Divergent mechanisms specify chordate motoneurons: evidence from ascidians. Development 138: 1643–1652.

15. ImaiKS, SatohN, SatouY (2002) Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. Development 129: 1729–1738.

16. BertrandV, HudsonC, CaillolD, PopoviciC, LemaireP (2003) Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115: 615–627.

17. KhoueiryP, RothbacherU, OhtsukaY, DaianF, FrangulianE, et al. (2010) A cis-regulatory signature in ascidians and flies, independent of transcription factor binding sites. Curr Biol 20: 792–802.

18. LamyC, RothbacherU, CaillolD, LemaireP (2006) Ci-FoxA-a is the earliest zygotic determinant of the ascidian anterior ectoderm and directly activates Ci-sFRP1/5. Development 133: 2835–2844.

19. HudsonC, DarrasS, CaillolD, YasuoH, LemaireP (2003) A conserved role for the MEK signalling pathway in neural tissue specification and posteriorisation in the invertebrate chordate, the ascidian Ciona intestinalis. Development 130: 147–159.

20. PiccoV, HudsonC, YasuoH (2007) Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development 134: 1491–1497.

21. ShiW, LevineM (2008) Ephrin signaling establishes asymmetric cell fates in an endomesoderm lineage of the Ciona embryo. Development 135: 931–940.

22. StolfiA, WagnerE, TaliaferroJM, ChouS, LevineM (2011) Neural tube patterning by Ephrin, FGF and Notch signaling relays. Development 138: 5429–5439.

23. MiaoH, WeiBR, PeehlDM, LiQ, AlexandrouT, et al. (2001) Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol 3: 527–530.

24. ChenC, WareSM, SatoA, Houston-HawkinsDE, HabasR, et al. (2006) The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development 133: 319–329.

25. Oda-IshiiI, BertrandV, MatsuoI, LemaireP, SaigaH (2005) Making very similar embryos with divergent genomes: conservation of regulatory mechanisms of Otx between the ascidians Halocynthia roretzi and Ciona intestinalis. Development 132: 1663–1674.

26. MassagueJ, SeoaneJ, WottonD (2005) Smad transcription factors. Genes Dev 19: 2783–2810.

27. MorikawaM, KoinumaD, MiyazonoK, HeldinCH (2012) Genome-wide mechanisms of Smad binding. Oncogene 32 (13) 1609–15.

28. GoumansMJ, ValdimarsdottirG, ItohS, RosendahlA, SiderasP, et al. (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21: 1743–1753.

29. GrayS, CaiH, BaroloS, LevineM (1995) Transcriptional repression in the Drosophila embryo. Philos Trans R Soc Lond B Biol Sci 349: 257–262.

30. Munoz-SanjuanI, BrivanlouAH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3: 271–280.

31. StreitA, BerlinerAJ, PapanayotouC, SirulnikA, SternCD (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406: 74–78.

32. WilsonSI, GrazianoE, HarlandR, JessellTM, EdlundT (2000) An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr Biol 10: 421–429.

33. MarchalL, LuxardiG, ThomeV, KodjabachianL (2009) BMP inhibition initiates neural induction via FGF signaling and Zic genes. Proc Natl Acad Sci U S A 106: 17437–17442.

34. DelauneE, LemaireP, KodjabachianL (2005) Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132: 299–310.

35. KretzschmarM, DoodyJ, MassagueJ (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389: 618–622.

36. PeraEM, IkedaA, EiversE, De RobertisEM (2003) Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 17: 3023–3028.

37. SatouY, KawashimaT, ShoguchiE, NakayamaA, SatohN (2005) An integrated database of the ascidian, Ciona intestinalis: towards functional genomics. Zoolog Sci 22: 837–843.

38. LemaireP, GarrettN, GurdonJB (1995) Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81: 85–94.

39. CorboJC, LevineM, ZellerRW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124: 589–602.

40. ErivesA, CorboJC, LevineM (1998) Lineage-specific regulation of the Ciona snail gene in the embryonic mesoderm and neuroectoderm. Dev Biol 194: 213–225.

41. RothbacherU, BertrandV, LamyC, LemaireP (2007) A combinatorial code of maternal GATA, Ets and {beta}-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development 134: 4023–4032.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#