Correlated Occurrence and Bypass of Frame-Shifting Insertion-Deletions (InDels) to Give Functional Proteins
Short insertions and deletions (InDels) comprise an important part of the natural mutational repertoire. InDels are, however, highly deleterious, primarily because two-thirds result in frame-shifts. Bypass through slippage over homonucleotide repeats by transcriptional and/or translational infidelity is known to occur sporadically. However, the overall frequency of bypass and its relation to sequence composition remain unclear. Intriguingly, the occurrence of InDels and the bypass of frame-shifts are mechanistically related - occurring through slippage over repeats by DNA or RNA polymerases, or by the ribosome, respectively. Here, we show that the frequency of frame-shifting InDels, and the frequency by which they are bypassed to give full-length, functional proteins, are indeed highly correlated. Using a laboratory genetic drift, we have exhaustively mapped all InDels that occurred within a single gene. We thus compared the naive InDel repertoire that results from DNA polymerase slippage to the frame-shifting InDels tolerated following selection to maintain protein function. We found that InDels repeatedly occurred, and were bypassed, within homonucleotide repeats of 3–8 bases. The longer the repeat, the higher was the frequency of InDels formation, and the more frequent was their bypass. Besides an expected 8A repeat, other types of repeats, including short ones, and G and C repeats, were bypassed. Although obtained in vitro, our results indicate a direct link between the genetic occurrence of InDels and their phenotypic rescue, thus suggesting a potential role for frame-shifting InDels as bridging evolutionary intermediates.
Vyšlo v časopise:
Correlated Occurrence and Bypass of Frame-Shifting Insertion-Deletions (InDels) to Give Functional Proteins. PLoS Genet 9(10): e32767. doi:10.1371/journal.pgen.1003882
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003882
Souhrn
Short insertions and deletions (InDels) comprise an important part of the natural mutational repertoire. InDels are, however, highly deleterious, primarily because two-thirds result in frame-shifts. Bypass through slippage over homonucleotide repeats by transcriptional and/or translational infidelity is known to occur sporadically. However, the overall frequency of bypass and its relation to sequence composition remain unclear. Intriguingly, the occurrence of InDels and the bypass of frame-shifts are mechanistically related - occurring through slippage over repeats by DNA or RNA polymerases, or by the ribosome, respectively. Here, we show that the frequency of frame-shifting InDels, and the frequency by which they are bypassed to give full-length, functional proteins, are indeed highly correlated. Using a laboratory genetic drift, we have exhaustively mapped all InDels that occurred within a single gene. We thus compared the naive InDel repertoire that results from DNA polymerase slippage to the frame-shifting InDels tolerated following selection to maintain protein function. We found that InDels repeatedly occurred, and were bypassed, within homonucleotide repeats of 3–8 bases. The longer the repeat, the higher was the frequency of InDels formation, and the more frequent was their bypass. Besides an expected 8A repeat, other types of repeats, including short ones, and G and C repeats, were bypassed. Although obtained in vitro, our results indicate a direct link between the genetic occurrence of InDels and their phenotypic rescue, thus suggesting a potential role for frame-shifting InDels as bridging evolutionary intermediates.
Zdroje
1. LynchM, SungW, MorrisK, CoffeyN, LandryCR, et al. (2008) A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci U S A 105: 9272–7.
2. StreisingerG, OkadaY, EmrichJ, NewtonJ, TsugitaA, et al. (1966) Frameshift mutations and the genetic code. Cold Spring Harb Symp Quant Biol 31: 77–84.
3. KashiY, KingDG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22: 253–9.
4. KochAL (2004) Catastrophe and what to do about it if you are a bacterium: the importance of frameshift mutants. Crit Rev Microbiol 30: 1–6.
5. MoxonER, RaineyPB, NowakMA, LenskiRE (1994) Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4: 24–33.
6. RaineyP, MoxonR (1993) Unusual mutational mechanisms and evolution. Science 260 1958; author reply 1959–60.
7. WernegreenJJ, KauppinenSN, DegnanPH (2010) Slip into something more functional: selection maintains ancient frameshifts in homopolymeric sequences. Mol Biol Evol 27: 833–9.
8. WagnerLA, WeissRB, DriscollR, DunnDS, GestelandRF (1990) Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res 18: 3529–35.
9. FarabaughPJ (1996) Programmed translational frameshifting. Microbiol Rev 60: 103–34.
10. FarabaughPJ (1996) Programmed translational frameshifting. Annu Rev Genet 30: 507–28.
11. BaranovPV, GestelandRF, AtkinsJF (2002) Recoding: translational bifurcations in gene expression. Gene 286: 187–201.
12. Cobucci-PonzanoB, TrinconeA, GiordanoA, RossiM, MoracciM (2003) Identification of the catalytic nucleophile of the family 29 alpha-L-fucosidase from Sulfolobus solfataricus via chemical rescue of an inactive mutant. Biochemistry 42: 9525–31.
13. Cobucci-PonzanoB, TrinconeA, GiordanoA, RossiM, MoracciM (2003) Identification of an archaeal alpha-L-fucosidase encoded by an interrupted gene. Production of a functional enzyme by mutations mimicking programmed −1 frameshifting. J Biol Chem 278: 14622–31.
14. TamasI, WernegreenJJ, NystedtB, KauppinenSN, DarbyAC, et al. (2008) Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts. Proc Natl Acad Sci U S A 105: 14934–9.
15. MeyerovichM, MamouG, Ben-YehudaS (2010) Visualizing high error levels during gene expression in living bacterial cells. Proc Natl Acad Sci U S A 107: 11543–8.
16. TsuchihashiZ, KornbergA (1990) Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci U S A 87: 2516–20.
17. TsuchihashiZ, BrownPO (1992) Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNA(Lys) and an AAG lysine codon. Genes Dev 6: 511–9.
18. Rockah-ShmuelL, TawfikDS (2012) Evolutionary transitions to new DNA methyltransferases through target site expansion and shrinkage. Nucleic Acids Res DOI: 10.1093/nar/gks944
19. BogaradLD, DeemMW (1999) A hierarchical approach to protein molecular evolution. Proc Natl Acad Sci U S A 96 (6) 2591–5.
20. Toth-PetroczyA, TawfikDS (2013) Protein Insertions and Deletions Enabled by Neutral Roaming in Sequence Space. Mol Biol Evol 10.1093/molbev/mst003.
21. GirdeaM, NoeL, KucherovG (2009) Back-translation for discovering distant protein homologies in the presence of frameshift mutations. Algorithms Mol Biol 5: 6.
22. GirdeaM, NoeL, KucherovG (2010) Back-translation for discovering distant protein homologies in the presence of frameshift mutations. Algorithms Mol Biol 5: 6.
23. SmithJM (1970) Natural selection and the concept of a protein space. Nature 225: 563–4.
24. MillsRE, LuttigCT, LarkinsCE, BeauchampA, TsuiC, et al. (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16: 1182–90.
25. LevinsonG, GutmanGA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4: 203–21.
26. LiYC, KorolAB, FahimaT, BeilesA, NevoE (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11: 2453–65.
27. KlintscharM, WiegandP (2003) Polymerase slippage in relation to the uniformity of tetrameric repeat stretches. Forensic Sci Int 135: 163–6.
28. NishizawaM, NishizawaK (2002) A DNA sequence evolution analysis generalized by simulation and the markov chain monte carlo method implicates strand slippage in a majority of insertions and deletions. J Mol Evol 55: 706–17.
29. MoranNA, McLaughlinHJ, SorekR (2009) The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323: 379–82.
30. BhangaleTR, RiederMJ, LivingstonRJ, NickersonDA (2005) Comprehensive identification and characterization of diallelic insertion-deletion polymorphisms in 330 human candidate genes. Hum Mol Genet 14: 59–69.
31. ChenJQ, WuY, YangH, BergelsonJ, KreitmanM, et al. (2009) Variation in the ratio of nucleotide substitution and indel rates across genomes in mammals and bacteria. Mol Biol Evol 26: 1523–31.
32. de la ChauxN, MesserPW, ArndtPF (2007) DNA indels in coding regions reveal selective constraints on protein evolution in the human lineage. BMC Evol Biol 7: 191.
33. SzomolanyiE, KissA, VenetianerP (1980) Cloning the modification methylase gene of Bacillus sphaericus R in Escherichia coli. Gene 10: 219–25.
34. BershteinS, GoldinK, TawfikDS (2008) Intense neutral drifts yield robust and evolvable consensus proteins. J Mol Biol 379: 1029–44.
35. KobayashiI (2001) Behavior of restriction–modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Research 29: 3742–3756.
36. MrukI, BlumenthalRM (2008) Real-time kinetics of restriction-modification gene expression after entry into a new host cell. Nucleic Acids Res 36: 2581–93.
37. NeuenschwanderM, ButzM, HeintzC, KastP, HilvertD (2007) A simple selection strategy for evolving highly efficient enzymes. Nat Biotechnol 25: 1145–7.
38. DrummondDA, WilkeCO (2009) The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 10: 715–24.
39. RaleighEA, WilsonG (1986) Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc Natl Acad Sci U S A 83: 9070–4.
40. McDonaldMJ, WangWC, HuangHD, LeuJY (2010) Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences. PLoS Biol 9: e1000622.
41. Cobucci-PonzanoB, GuzziniL, BenelliD, LondeiP, PerrodouE, et al. (2010) Functional characterization and high-throughput proteomic analysis of interrupted genes in the archaeon Sulfolobus solfataricus. J Proteome Res 9: 2496–507.
42. BurgerR, WillensdorferM, NowakMA (2006) Why are phenotypic mutation rates much higher than genotypic mutation rates? Genetics 172: 197–206.
43. GoldsmithM, TawfikDS (2009) Potential role of phenotypic mutations in the evolution of protein expression and stability. Proc Natl Acad Sci U S A 106: 6197–202.
44. WhiteheadDJ, WilkeCO, VernazobresD, Bornberg-BauerE (2008) The look-ahead effect of phenotypic mutations. Biol Direct 3: 18.
45. RajonE, MaselJ (2011) Evolution of molecular error rates and the consequences for evolvability. Proc Natl Acad Sci U S A 108: 1082–7.
46. AltschulSF, MaddenTL, SchafferAA, ZhangJ, ZhangZ, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–402.
47. AvraniS, WurtzelO, SharonI, SorekR, LindellD (2011) Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 474: 604–8.
48. WurtzelO, Dori-BachashM, PietrokovskiS, JurkevitchE, SorekR (2010) Mutation detection with next-generation resequencing through a mediator genome. PLoS One 5: e15628.
49. AshkenazyH, ErezE, MartzE, PupkoT, Ben-TalN (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38: W529–33.
50. ReinischKM, ChenL, VerdineGL, LipscombWN (1995) The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell 82: 143–53.
51. BlattnerFR, PlunkettG3rd, BlochCA, PernaNT, BurlandV, et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–62.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Dominant Mutations in Identify the Mlh1-Pms1 Endonuclease Active Site and an Exonuclease 1-Independent Mismatch Repair Pathway
- Eleven Candidate Susceptibility Genes for Common Familial Colorectal Cancer
- The Histone H3 K27 Methyltransferase KMT6 Regulates Development and Expression of Secondary Metabolite Gene Clusters
- A Mutation in the Gene in Labrador Retrievers with Hereditary Nasal Parakeratosis (HNPK) Provides Insights into the Epigenetics of Keratinocyte Differentiation