Direct Monitoring of the Strand Passage Reaction of DNA Topoisomerase II Triggers Checkpoint Activation
By necessity, the ancient activity of type II topoisomerases co-evolved with the double-helical structure of DNA, at least in organisms with circular genomes. In humans, the strand passage reaction of DNA topoisomerase II (Topo II) is the target of several major classes of cancer drugs which both poison Topo II and activate cell cycle checkpoint controls. It is important to know the cellular effects of molecules that target Topo II, but the mechanisms of checkpoint activation that respond to Topo II dysfunction are not well understood. Here, we provide evidence that a checkpoint mechanism monitors the strand passage reaction of Topo II. In contrast, cells do not become checkpoint arrested in the presence of the aberrant DNA topologies, such as hyper-catenation, that arise in the absence of Topo II activity. An overall reduction in Topo II activity (i.e. slow strand passage cycles) does not activate the checkpoint, but specific defects in the T-segment transit step of the strand passage reaction do induce a cell cycle delay. Furthermore, the cell cycle delay depends on the divergent and catalytically inert C-terminal region of Topo II, indicating that transmission of a checkpoint signal may occur via the C-terminus. Other, well characterized, mitotic checkpoints detect DNA lesions or monitor unattached kinetochores; these defects arise via failures in a variety of cell processes. In contrast, we have described the first example of a distinct category of checkpoint mechanism that monitors the catalytic cycle of a single specific enzyme in order to determine when chromosome segregation can proceed faithfully.
Vyšlo v časopise:
Direct Monitoring of the Strand Passage Reaction of DNA Topoisomerase II Triggers Checkpoint Activation. PLoS Genet 9(10): e32767. doi:10.1371/journal.pgen.1003832
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003832
Souhrn
By necessity, the ancient activity of type II topoisomerases co-evolved with the double-helical structure of DNA, at least in organisms with circular genomes. In humans, the strand passage reaction of DNA topoisomerase II (Topo II) is the target of several major classes of cancer drugs which both poison Topo II and activate cell cycle checkpoint controls. It is important to know the cellular effects of molecules that target Topo II, but the mechanisms of checkpoint activation that respond to Topo II dysfunction are not well understood. Here, we provide evidence that a checkpoint mechanism monitors the strand passage reaction of Topo II. In contrast, cells do not become checkpoint arrested in the presence of the aberrant DNA topologies, such as hyper-catenation, that arise in the absence of Topo II activity. An overall reduction in Topo II activity (i.e. slow strand passage cycles) does not activate the checkpoint, but specific defects in the T-segment transit step of the strand passage reaction do induce a cell cycle delay. Furthermore, the cell cycle delay depends on the divergent and catalytically inert C-terminal region of Topo II, indicating that transmission of a checkpoint signal may occur via the C-terminus. Other, well characterized, mitotic checkpoints detect DNA lesions or monitor unattached kinetochores; these defects arise via failures in a variety of cell processes. In contrast, we have described the first example of a distinct category of checkpoint mechanism that monitors the catalytic cycle of a single specific enzyme in order to determine when chromosome segregation can proceed faithfully.
Zdroje
1. BrownPO, CozzarelliNR (1979) A sign inversion mechanism for enzymatic supercoiling of DNA. Science 206 (4422) 1081–1083.
2. LiuLF, LiuCC, AlbertsBM (1979) T4 DNA topoisomerase: a new ATP-dependent enzyme essential for initiation of T4 bacteriophage DNA replication. Nature 281 (5731) 456–461.
3. WangJC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3 (6) 430–440.
4. NitissJL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9 (5) 338–350.
5. DeweeseJE, OsheroffN (2009) The DNA Cleavage Reaction of Topoisomerase II: Wolf in Sheep's Clothing. Nucleic Acids Res (37) 738–748.
6. DownesCS, ClarkeDJ, MullingerAM, Giménez-AbiánJF, CreightonAM, et al. (1994) A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature 372 (6505) 467–470.
7. DemingPB, CistulliCA, ZhaoH, GravesPR, Piwnica-WormsH, et al. (2001) The human decatenation checkpoint. Proc Natl Acad Sci U S A 98 (21) 12044–12049.
8. DemingPB, FloresKG, DownesCS, PaulesRS, KaufmannWK (2002) ATR enforces the topoisomerase II-dependent G2 checkpoint through inhibition of Plk1 kinase. J Biol Chem 277 (39) 36832–36838.
9. SkoufiasDA, LacroixFB, AndreassenPR, WilsonL, MargolisRL (2004) Inhibition of DNA decatenation, but not DNA damage, arrests cells at metaphase. Mol Cell 15 (6) 977–990.
10. BowerJJ, KaracaGF, ZhouY, SimpsonDA, Cordeiro-StoneM, et al. (2010) Topoisomerase IIalpha maintains genomic stability through decatenation G(2) checkpoint signaling. Oncogene 29 (34) 4787–4799.
11. LuoK, YuanJ, ChenJ, LouZ (2009) Topoisomerase IIalpha controls the decatenation checkpoint. Nat Cell Biol 11 (2) 204–210.
12. RocaJ, IshidaR, BergerJM, AndohT, WangJC (1994) Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci U S A 91 (5) 1781–1785.
13. AndrewsCA, VasAC, MeierB, Gimenez-AbianJF, Diaz-MartinezLA, et al. (2006) A mitotic topoisomerase II checkpoint in budding yeast is required for genome stability but acts independently of Pds1/securin. Genes Dev 20 (9) 1162–1174.
14. PinskyBA, KungC, ShokatKM, BigginsS (2006) The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nat Cell Biol 8 (1) 78–83.
15. PinskyBA, BigginsS (2005) The spindle checkpoint: tension versus attachment. Trends Cell Biol 15 (9) 486–493.
16. EarnshawWC, HeckMM (1985) Localization of topoisomerase II in mitotic chromosomes. J Cell Biol 100 (5) 1716–1725.
17. TavorminaPA, ComeMG, HudsonJR, MoYY, BeckWT, et al. (2002) Rapid exchange of mammalian topoisomerase II alpha at kinetochores and chromosome arms in mitosis. J Cell Biol 158 (1) 23–29.
18. SchuelerMG, SullivanBA (2006) Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet 7: 301–313.
19. OsheroffN, ZechiedrichEL, GaleKC (1991) Catalytic function of DNA topoisomerase II. Bioessays 13 (6) 269–273.
20. DeweeseJE, OsheroffMA, OsheroffN (2008) DNA Topology and Topoisomerases: Teaching a “Knotty” Subject. Biochem Mol Biol Educ 37 (1) 2–10.
21. WarsiTH, NavarroMS, BachantJ (2008) DNA topoisomerase II is a determinant of the tensile properties of yeast centromeric chromatin and the tension checkpoint. Mol Biol Cell 19 (10) 4421–4433.
22. VasACJ, AndrewsCA, Kirkland-MateskyK, ClarkeDJ (2007) In Vivo Analysis of Chromosome Condensation in Saccharomyces cerevisiae. Mol Biol Cell 18 (2) 557–568.
23. DohmenRJ, WuP, VarshavskyA (1994) Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263: 1273–1276.
24. Furniss K, Vas AC, Lane A, Clarke DJ (2009) Assaying topoisomerase II checkpoints in yeast. In: Clarke DJ, editor. DNA Topoisomerases. New York: Humana Press.
25. BaxterJ, DiffleyJF (2008) Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. Mol Cell 30 (6) 790–802.
26. BairdCL, HarkinsTT, MorrisSK, LindsleyJE (1999) Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc Natl Acad Sci U S A 96 (24) 13685–13690.
27. DongKC, BergerJM (2007) Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 450 (7173) 1201–1205.
28. LindsleyJE, WangJC (1991) Proteolysis patterns of epitopically labeled yeast DNA topoisomerase II suggest an allosteric transition in the enzyme induced by ATP binding. Proc Natl Acad Sci U S A 88 (23) 10485–10489.
29. LiuQ, WangJC (1998) Identification of active site residues in the “GyrA” half of yeast DNA topoisomerase II. J Biol Chem 273 (32) 20252–20260.
30. LiuQ, WangJC (1999) Similarity in the catalysis of DNA breakage and rejoining by type IA and IIA DNA topoisomerases. Proc Natl Acad Sci U S A 96 (3) 881–886.
31. LiuYX, HsiungY, JannatipourM, YehY, NitissJL (1994) Yeast topoisomerase II mutants resistant to anti-topoisomerase agents: identification and characterization of new yeast topoisomerase II mutants selected for resistance to etoposide. Cancer Res 54 (11) 2943–2951.
32. WassermanRA, WangJC (1994) Mechanistic studies of amsacrine-resistant derivatives of DNA topoisomerase II. Implications in resistance to multiple antitumor drugs targeting the enzyme. J Biol Chem 269 (33) 20943–20951.
33. JensenS, RedwoodCS, JenkinsJR, AndersenAH, HicksonID (1996) Human DNA topoisomerases II alpha and II beta can functionally substitute for yeast TOP2 in chromosome segregation and recombination. Mol Gen Genet 252 (1–2) 79–86.
34. TavorminaPA, BurkeDJ (2000) Cell cycle arrest in cdc20 mutants of Saccharomyces cerevisiae is independent of Ndc10p and kinetochore function but requires a subset of spindle checkpoint genes. Genetics 148 (4) 1701–1713.
35. IoukT, KerscherO, ScottRJ, BasraiMA, WozniakRW (2002) The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J Cell Biol 159 (5) 807–819.
36. BowerJJ, ZhouY, ZhouT, SimpsonDA, ArlanderSJ, et al. (2010) Revised genetic requirements for the decatenation G2 checkpoint: the role of ATM. Cell Cycle 9 (8) 1617–28.
37. ClarkeDJ, VasAC, AndrewsCA, Díaz-MartínezLA, Giménez-AbiánJF (2006) Topoisomerase II checkpoints: universal mechanisms that regulate mitosis. Cell Cycle 5 (17) 1925–8.
38. VagnarelliP, MorrisonC, DodsonH, SonodaE, TakedaS, et al. (2004) Analysis of Scc1-deficient cells defines a key metaphase role of vertebrate cohesin in linking sister kinetochores. EMBO Rep 5 (2) 167–71.
39. Burke D (2000) Methods in yeast genetics: Cold Spring Harbor Laboratory Press.
40. LiuH, NaismithJH (2008) An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol 8: 91.
41. StraightAF, MarshallWF, SedatJW, MurrayAW (1997) Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277 (5325) 574–578.
42. SelmeckiA, ForcheA, BermanJ (2006) Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313: 367–370.
43. Holm, StearnsT, BotsteinD (1989) DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol Cell Biol 9 (1) 159–168.
44. ElseaSH, HsiungY, NitissJL, OsheroffN (1995) A Yeast Type II Topoisomerase Selected for Resistance to Quinolones. J Biol Chem 270: 1913–1920.
45. McClendonAK, RodriquezAC, OsheroffN (2005) Human Topoisomerase IIα Rapidly Relaxes Positively Supercoiled DNA. J Biol Chem 280: 39337–39345.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Dominant Mutations in Identify the Mlh1-Pms1 Endonuclease Active Site and an Exonuclease 1-Independent Mismatch Repair Pathway
- Eleven Candidate Susceptibility Genes for Common Familial Colorectal Cancer
- The Histone H3 K27 Methyltransferase KMT6 Regulates Development and Expression of Secondary Metabolite Gene Clusters
- A Mutation in the Gene in Labrador Retrievers with Hereditary Nasal Parakeratosis (HNPK) Provides Insights into the Epigenetics of Keratinocyte Differentiation