A Genetic Approach to the Recruitment of PRC2 at the Locus
Polycomb group (PcG) proteins are essential for the repression of key factors during early development. In Drosophila, the polycomb repressive complexes (PRC) associate with defined polycomb response DNA elements (PREs). In mammals, however, the mechanisms underlying polycomb recruitment at targeted loci are poorly understood. We have used an in vivo approach to identify DNA sequences of importance for the proper recruitment of polycomb proteins at the HoxD locus. We report that various genomic re-arrangements of the gene cluster do not strongly affect PRC2 recruitment and that relatively small polycomb interacting sequences appear necessary and sufficient to confer polycomb recognition and targeting to ectopic loci. In addition, a high GC content, while not sufficient to recruit PRC2, may help its local spreading. We discuss the importance of PRC2 recruitment over Hox gene clusters in embryonic stem cells, for their subsequent coordinated transcriptional activation during development.
Vyšlo v časopise:
A Genetic Approach to the Recruitment of PRC2 at the Locus. PLoS Genet 9(11): e32767. doi:10.1371/journal.pgen.1003951
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003951
Souhrn
Polycomb group (PcG) proteins are essential for the repression of key factors during early development. In Drosophila, the polycomb repressive complexes (PRC) associate with defined polycomb response DNA elements (PREs). In mammals, however, the mechanisms underlying polycomb recruitment at targeted loci are poorly understood. We have used an in vivo approach to identify DNA sequences of importance for the proper recruitment of polycomb proteins at the HoxD locus. We report that various genomic re-arrangements of the gene cluster do not strongly affect PRC2 recruitment and that relatively small polycomb interacting sequences appear necessary and sufficient to confer polycomb recognition and targeting to ectopic loci. In addition, a high GC content, while not sufficient to recruit PRC2, may help its local spreading. We discuss the importance of PRC2 recruitment over Hox gene clusters in embryonic stem cells, for their subsequent coordinated transcriptional activation during development.
Zdroje
1. LewisEB (1978) A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.
2. MargueronR, ReinbergD (2011) The Polycomb complex PRC2 and its mark in life. Nature 469: 343–349.
3. WutzA (2011) X inactivation: a histone protects from reprogramming by the frog. EMBO J 30: 2310–2311.
4. TerranovaR, YokobayashiS, StadlerMB, OtteAP, van LohuizenM, et al. (2008) Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 15: 668–679.
5. WolffP, WeinhoferI, SeguinJ, RoszakP, BeiselC, et al. (2011) High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis Endosperm. PLoS Genet 7: e1002126.
6. MoreyL, PascualG, CozzutoL, RomaG, WutzA, et al. (2012) Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10: 47–62.
7. O'LoghlenA, Munoz-CabelloAM, Gaspar-MaiaA, WuHA, BanitoA, et al. (2012) MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 10: 33–46.
8. SauvageauM, SauvageauG (2010) Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7: 299–313.
9. SchuettengruberB, GanapathiM, LeblancB, PortosoM, JaschekR, et al. (2009) Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol 7: e13.
10. EskelandR, LeebM, GrimesGR, KressC, BoyleS, et al. (2010) Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 38: 452–464.
11. FrancisNJ, KingstonRE, WoodcockCL (2004) Chromatin compaction by a polycomb group protein complex. Science 306: 1574–1577.
12. GaoZH, ZhangJ, BonasioR, StrinoF, SawaiA, et al. (2012) PCGF Homologs, CBX Proteins, and RYBP Define Functionally Distinct PRC1 Family Complexes. Molecular Cell 45: 344–356.
13. PasiniD, BrackenAP, JensenMR, Lazzerini DenchiE, HelinK (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23: 4061–4071.
14. de NapolesM, MermoudJE, WakaoR, TangYA, EndohM, et al. (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Developmental Cell 7: 663–676.
15. O'CarrollD, ErhardtS, PaganiM, BartonSC, SuraniMA, et al. (2001) The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21: 4330–4336.
16. FaustC, LawsonKA, SchorkNJ, ThielB, MagnusonT (1998) The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development 125: 4495–4506.
17. ChanRaP (1994) A Polycomb response element in the Ubxgene that determines an epigenetically inherited state of repression. EMBO Journal 13: 2553–2564.
18. SchwartzYB, PirrottaV (2008) Polycomb complexes and epigenetic states. Current Opinion in Cell Biology 20: 266–273.
19. SimonJ, ChiangA, BenderW, ShimellMJ, O'ConnorM (1993) Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev Biol 158: 131–144.
20. StruttH, ParoR (1997) The polycomb group protein complex of Drosophila melanogaster has different compositions at different target genes. Mol Cell Biol 17: 6773–6783.
21. KassisJA (1994) Unusual properties of regulatory DNA from the Drosophila engrailed gene: three “pairing-sensitive” sites within a 1.6-kb region. Genetics 136: 1025–1038.
22. ChanasG, MaschatF (2005) Tissue specificity of hedgehog repression by the Polycomb group during Drosophila melanogaster development. Mech Dev 122: 975–987.
23. MaurangeC, ParoR (2002) A cellular memory module conveys epigenetic inheritance of hedgehog expression during Drosophila wing imaginal disc development. Genes Dev 16: 2672–2683.
24. BloyerS, CavalliG, BrockHW, DuraJM (2003) Identification and characterization of polyhomeotic PREs and TREs. Dev Biol 261: 426–442.
25. SchwartzYB, KahnTG, NixDA, LiXY, BourgonR, et al. (2006) Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 38: 700–705.
26. CometI, SchuettengruberB, SextonT, CavalliG (2011) A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. Proc Natl Acad Sci U S A 108: 2294–2299.
27. EnderleD, BeiselC, StadlerMB, GerstungM, AthriP, et al. (2011) Polycomb preferentially targets stalled promoters of coding and noncoding transcripts. Genome Res 21: 216–226.
28. KharchenkoPV, AlekseyenkoAA, SchwartzYB, MinodaA, RiddleNC, et al. (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471: 480–485.
29. FiedlerT, RehmsmeierM (2006) jPREdictor: a versatile tool for the prediction of cis-regulatory elements. Nucleic Acids Res 34: W546–550.
30. SingA, PannellD, KaraiskakisA, SturgeonK, DjabaliM, et al. (2009) A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138: 885–897.
31. WooCJ, KharchenkoPV, DaheronL, ParkPJ, KingstonRE (2010) A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140: 99–110.
32. PouxS, MelfiR, PirrottaV (2001) Establishment of Polycomb silencing requires a transient interaction between PC and ESC. Genes Dev 15: 2509–2514.
33. WangL, BrownJL, CaoR, ZhangY, KassisJA, et al. (2004) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14: 637–646.
34. MullerJ, HartCM, FrancisNJ, VargasML, SenguptaA, et al. (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197–208.
35. KlymenkoT, PappB, FischleW, KocherT, SchelderM, et al. (2006) A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev 20: 1110–1122.
36. NekrasovM, KlymenkoT, FratermanS, PappB, OktabaK, et al. (2007) Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. Embo Journal 26: 4078–4088.
37. ArnoldP, ScholerA, PachkovM, BalwierzPJ, JorgensenH, et al. (2012) Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Research 23: 60–73.
38. KuM, KocheRP, RheinbayE, MendenhallEM, EndohM, et al. (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4: e1000242.
39. MohnF, WeberM, RebhanM, RoloffTC, RichterJ, et al. (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30: 755–766.
40. MendenhallEM, KocheRP, TruongT, ZhouVW, IssacB, et al. (2010) GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet 6: e1001244.
41. LynchMD, SmithAJ, De GobbiM, FlenleyM, HughesJR, et al. (2012) An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO J 31: 317–329.
42. GilbertN, ThomsonI, BoyleS, AllanJ, RamsahoyeB, et al. (2007) DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction. The Journal of cell biology 177: 401–411.
43. ReddingtonJP, PerriconeSM, NestorCE, ReichmannJ, YoungsonNA, et al. (2013) Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome biology 14: R25.
44. BernsteinBE, MikkelsenTS, XieX, KamalM, HuebertDJ, et al. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315–326.
45. BoyerLA, PlathK, ZeitlingerJ, BrambrinkT, MedeirosLA, et al. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441: 349–353.
46. LeeTI, JennerRG, BoyerLA, GuentherMG, LevineSS, et al. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: 301–313.
47. TschoppP, DubouleD (2011) A regulatory ‘landscape effect’ over the HoxD cluster. Dev Biol 351: 288–296.
48. RinnJL, KerteszM, WangJK, SquazzoSL, XuX, et al. (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129: 1311–1323.
49. WooCJ, KharchenkoPV, DaheronL, ParkPJ, KingstonRE (2013) Variable Requirements for DNA-Binding Proteins at Polycomb-Dependent Repressive Regions in Human HOX Clusters. Molecular and Cellular Biology 33: 3274–3285.
50. SoshnikovaN, DubouleD (2009) Epigenetic temporal control of mouse Hox genes in vivo. Science 324: 1320–1323.
51. BeckersJ, DubouleD (1998) Genetic analysis of a conserved sequence in the HoxD complex: regulatory redundancy or limitations of the transgenic approach? Dev Dyn 213: 1–11.
52. BeckersJ, GerardM, DubouleD (1996) Transgenic analysis of a potential Hoxd-11 limb regulatory element present in tetrapods and fish. Dev Biol 180: 543–553.
53. SiposL, KozmaG, MolnarE, BenderW (2007) In situ dissection of a polycomb response element in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 104: 12416–12421.
54. MontavonT, SoshnikovaN, MascrezB, JoyeE, ThevenetL, et al. (2011) A regulatory archipelago controls Hox genes transcription in digits. Cell 147: 1132–1145.
55. DixonJR, SelvarajS, YueF, KimA, LiY, et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376–380.
56. LanglaisKK, BrownJL, KassisJA (2012) Polycomb Group Proteins Bind an engrailed PRE in Both the “ON” and “OFF” Transcriptional States of engrailed. Plos One 7: e48765.
57. TakahashiK, YamanakaS (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.
58. WernigM, MeissnerA, ForemanR, BrambrinkT, KuM, et al. (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448: 318–324.
59. DubouleD (2007) The rise and fall of Hox gene clusters. Development 134: 2549–2560.
60. NoordermeerD, LeleuM, SplinterE, RougemontJ, De LaatW, et al. (2011) The dynamic architecture of Hox gene clusters. Science 334: 222–225.
61. BantigniesF, RoureV, CometI, LeblancB, SchuettengruberB, et al. (2011) Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144: 214–226.
62. BrookesE, de SantiagoI, HebenstreitD, MorrisKJ, CarrollT, et al. (2012) Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell 10: 157–170.
63. BenderW, FitzgeraldDP (2002) Transcription activates repressed domains in the Drosophila bithorax complex. Development 129: 4923–4930.
64. HoggaI, KarchF (2002) Transcription through the iab-7 cis-regulatory domain of the bithorax complex interferes with maintenance of Polycomb-mediated silencing. Development 129: 4915–4922.
65. RankG, PrestelM, ParoR (2002) Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch. Mol Cell Biol 22: 8026–8034.
66. SchmittS, ParoR (2006) RNA at the steering wheel. Genome Biology 7: 218.
67. SchmittS, PrestelM, ParoR (2005) Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev 19: 697–708.
68. PetrukS, SedkovY, RileyKM, HodgsonJ, SchweisguthF, et al. (2006) Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127: 1209–1221.
69. PengJC, ValouevA, SwigutT, ZhangJ, ZhaoY, et al. (2009) Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139: 1290–1302.
70. HeJ, ShenL, WanM, TaranovaO, WuH, et al. (2013) Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nature cell biology 15: 373–384.
71. FarcasAM, BlackledgeNP, SudberyI, LongHK, McGouranJF, et al. (2012) KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. Elife 1: e00205.
72. TilloD, KaplanN, MooreIK, Fondufe-MittendorfY, GossettAJ, et al. (2010) High Nucleosome Occupancy Is Encoded at Human Regulatory Sequences. Plos One 5: e9129.
73. YuanW, WuT, FuH, DaiC, WuH, et al. (2012) Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 337: 971–975.
74. SchorderetP, DubouleD (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet 7: e1002071.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 11
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in the Neurofibromatosis-1 Growth Deficiency
- RNA∶DNA Hybrids Initiate Quasi-Palindrome-Associated Mutations in Highly Transcribed Yeast DNA
- The Light Skin Allele of in South Asians and Europeans Shares Identity by Descent
- Roles of XRCC2, RAD51B and RAD51D in RAD51-Independent SSA Recombination