Ribosome Synthesis and MAPK Activity Modulate Ionizing Radiation-Induced Germ Cell Apoptosis in
Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment.
Vyšlo v časopise:
Ribosome Synthesis and MAPK Activity Modulate Ionizing Radiation-Induced Germ Cell Apoptosis in. PLoS Genet 9(11): e32767. doi:10.1371/journal.pgen.1003943
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003943
Souhrn
Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment.
Zdroje
1. HoeijmakersJHJ (2009) DNA damage, aging, and cancer. N Engl J Med 361: 1475–1485 doi:10.1056/NEJMra0804615
2. OlsonM (2004) Sensing Cellular Stress: Another New Function for the Nucleolus? Science's STKE 2004: pe10 doi:10.1126/stke.2242004pe10
3. MayerC, GrummtI (2005) Cellular stress and nucleolar function. Cell Cycle 4: 1036–1038.
4. BoulonS, WestmanBJ, HuttenS, BoisvertF-M, LamondAI (2010) The nucleolus under stress. Mol Cell 40: 216–227 doi:10.1016/j.molcel.2010.09.024
5. DerenziniM (2000) The AgNORs. Micron 31: 117–120.
6. MontanaroL, TreréD, DerenziniM (2008) Nucleolus, ribosomes, and cancer. Am J Pathol 173: 301–310 doi:10.2353/ajpath.2008.070752
7. RudraD, WarnerJR (2004) What better measure than ribosome synthesis? Genes Dev 18: 2431–2436 doi:10.1101/gad.1256704
8. MossT (2004) At the crossroads of growth control; making ribosomal RNA. Current Opinion in Genetics & Development 14: 210–217 doi:10.1016/j.gde.2004.02.005
9. LafertéA, FavryE, SentenacA, RivaM, CarlesC, et al. (2006) The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components. Genes Dev 20: 2030–2040 doi:10.1101/gad.386106
10. StefanovskyVY, PelletierG, HannanR, Gagnon-KuglerT, RothblumLI, et al. (2001) An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol Cell 8: 1063–1073.
11. OskarssonT, TrumppA (2005) The Myc trilogy: lord of RNA polymerases. Nat Cell Biol 7: 215–217.
12. MayerC, GrummtI (2006) Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25: 6384–6391 doi:10.1038/sj.onc.1209883
13. CavanaughAH, HempelWM, TaylorLJ, RogalskyV, TodorovG, et al. (1995) Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 374: 177–180 doi:10.1038/374177a0
14. ZhaiW, ComaiL (2000) Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 20: 5930–5938 doi:10913176
15. RubbiCP, MilnerJ (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22: 6068–6077.
16. RuggeroD, PandolfiPP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3: 179–192 doi:10.1038/nrc1015
17. KalitaK, MakonchukD, GomesC, ZhengJ-J, HetmanM (2008) Inhibition of nucleolar transcription as a trigger for neuronal apoptosis. J Neurochem 105: 2286–2299 doi:10.1111/j.1471-4159.2008.05316.x
18. YuanX, ZhouY, CasanovaE, ChaiM, KissE, et al. (2005) Genetic Inactivation of the Transcription Factor TIF-IA Leads to Nucleolar Disruption, Cell Cycle Arrest, and p53-Mediated Apoptosis. Mol Cell 19: 77–87 doi:10.1016/j.molcel.2005.05.023
19. PontiD, TroianoM, BellenchiGC, BattagliaP, GiglianiF (2008) The HIV Tat protein affects processing of ribosomal RNA precursor. BMC Cell Biol 9: 32 doi:1471-2121-9-32
20. AmsterdamA, SadlerKC, LaiK, FarringtonS, BronsonRT, et al. (2004) Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2: E139.
21. FarrarJE, VlachosA, AtsidaftosE, Carlson-DonohoeH, MarkelloTC, et al. (2011) Ribosomal protein gene deletions in Diamond-Blackfan anemia. Blood 118: 6943–6951 doi:10.1182/blood-2011-08-375170
22. ZhouB, ElledgeS (2000) The DNA damage response: putting checkpoints in perspective. Nature 408: 433–439.
23. StergiouL, HengartnerMO (2004) Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ 11: 21–28.
24. GumiennyTL, LambieE, HartwiegE, HorvitzHR, HengartnerMO (1999) Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126: 1011–1022.
25. Gartner A, Boag PR, Blackwell TK (2008) Germline survival and apoptosis. WormBook, ed. The C. elegans Research Community, http://www.wormbook.org. doi/10.1895/wormbook.1.145.1
26. SchertelC, ConradtB (2007) C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions. Development 134: 3691–3701 doi:10.1242/dev.004606
27. ReddienPW, AndersenEC, HuangMC, HorvitzHR (2007) DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans. Genetics 175: 1719–1733 doi:10.1534/genetics.106.068148
28. ChurchDL, GuanKL, LambieEJ (1995) Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development 121: 2525–2535.
29. LeeM-H, OhmachiM, ArurS, NayakS, FrancisR, et al. (2007) Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 177: 2039–2062 doi:10.1534/genetics.107.081356
30. SchumacherB, HofmannK, BoultonS, GartnerA (2001) The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol 11: 1722–1727.
31. DerryW, PutzkeA, RothmanJ (2001) Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294: 591–595 doi:10.1126/science.1065486
32. SchumacherB, SchertelC, WittenburgN, TuckS, MitaniS, et al. (2005) C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage. Cell Death Differ 12: 153–161 doi:10.1038/sj.cdd.4401539
33. Del PesoL, GonzalezVM, InoharaN, EllisRE, NúñezG (2000) Disruption of the CED-9.CED-4 complex by EGL-1 is a critical step for programmed cell death in Caenorhabditis elegans. J Biol Chem 275: 27205–27211 doi:10.1074/jbc.M000858200
34. Conradt B, Xue D (2005) Programmed cell death. WormBook, ed. The C. elegans Research Community, http://www.wormbook.org. doi/10.1895/wormbook.1.32.1
35. KamathR, AhringerJ (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods (San Diego, Calif) 30: 313–321.
36. RualJ-F, CeronJ, KorethJ, HaoT, NicotA-S, et al. (2004) Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14: 2162–2168 doi:10.1101/gr.2505604
37. CGC, Caenorhabditis Genetics Center University of Minnesota. Available: http://www.cbs.umn.edu/CGC/.
38. BushnellD, KornbergR (2003) Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription. P Natl Acad Sci Usa 100: 6969–6973 doi:10.1073/pnas.1130601100
39. CramerP (2002) Multisubunit RNA polymerases. Curr Opin Struct Biol 12: 89–97.
40. CramerP (2001) Structural Basis of Transcription: RNA Polymerase II at 2.8 Angstrom Resolution. Science 292: 1863–1876 doi:10.1126/science.1059493
41. LemmensBBLG, TijstermanM (2011) DNA double-strand break repair in Caenorhabditis elegans. Chromosoma 120: 1–21 doi:10.1007/s00412-010-0296-3
42. HarrisJ, LowdenM, ClejanI, TzonevaM, ThomasJ, et al. (2006) Mutator Phenotype of Caenorhabditis elegans DNA Damage Checkpoint Mutants. Genetics 174: 601–616 doi:10.1534/genetics.106.058701
43. GartnerA, MilsteinS, AhmedS, HodgkinJ, HengartnerMO (2000) A conserved checkpoint pathway mediates DNA damage–induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 5: 435–443.
44. StergiouL, DoukoumetzidisK, SendoelA, HengartnerMO (2007) The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans. Cell Death Differ 14: 1129–1138.
45. StergiouL, EberhardR, DoukoumetzidisK, HengartnerMO (2011) NER and HR pathways act sequentially to promote UV-C-induced germ cell apoptosis in Caenorhabditis elegans. Cell Death Differ 18: 897–906 doi:10.1038/cdd.2010.158
46. PepperAS-R, LoTW, KillianDJ, HallDH, HubbardEJA (2003) The establishment of Caenorhabditis elegans germline pattern is controlled by overlapping proximal and distal somatic gonad signals. Dev Biol 259: 336–350.
47. Kimble J, Crittenden SL (2005) Germline proliferation and its control. WormBook, ed. The C. elegans Research Community, http://www.wormbook.org. doi/10.1895/wormbook.1.13.1
48. Schedl T (2012) Germ Cell Development in C. elegans. Springer Books ISBN 9781461440154. 434 p.
49. SyntichakiP, TroulinakiK, TavernarakisN (2007) eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445: 922–926 doi:10.1038/nature05603
50. HansenM, TaubertS, CrawfordD, LibinaN, LeeS, et al. (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6: 95–110 doi:10.1111/ace.2007.6.issue-1
51. Strome S (2005) Specification of the germ line. WormBook, ed. The C. elegans Research Community, http://www.wormbook.org. doi/10.1895/wormbook.1.9.1
52. KillianD, HubbardE (2004) C-elegans pro-1 activity is required for soma/germline interactions that influence proliferation and differentiation in the germ line. Development 131: 1267–1278 doi:10.1242/dev.01002
53. VoutevR, KillianDJ, AhnJH, HubbardEJA (2006) Alterations in ribosome biogenesis cause specific defects in C. elegans hermaphrodite gonadogenesis. Dev Biol 298: 45–58.
54. PepperA (2003) The establishment of Caenorhabditis elegans germline pattern is controlled by overlapping proximal and distal somatic gonad signals. Dev Biol 259: 336–350 doi:10.1016/S0012-1606(03)00203-3
55. WatersKA, ReinkeV (2011) Extrinsic and intrinsic control of germ cell proliferation in Caenorhabditis elegans. Mol Reprod Dev 78: 151–160 doi:10.1002/mrd.21289
56. McGovernM, VoutevR, MaciejowskiJ, CorsiAK, HubbardEJA (2009) A “latent niche” mechanism for tumor initiation. Proc Natl Acad Sci USA 106: 11617–11622 doi:10.1073/pnas.0903768106
57. Lafontaine DL, Tollervey D (2001) Ribosomal RNA. Available: http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0000877/abstract.
58. WarnerJR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24: 437–440.
59. FaticaA, TollerveyD (2002) Making ribosomes. Curr Opin Cell Biol 14: 313–318.
60. KresslerD, HurtE, BasslerJ (2010) Driving ribosome assembly. Biochim Biophys Acta 1803: 673–683 doi:10.1016/j.bbamcr.2009.10.009
61. Fromont-RacineM, SengerB, SaveanuC, FasioloF (2003) Ribosome assembly in eukaryotes. Gene 313: 17–42.
62. SonenbergN, HinnebuschA (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136: 731–745 doi:10.1016/j.cell.2009.01.042
63. SpriggsK, BushellM, WillisA (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40: 228–237 doi:10.1016/j.molcel.2010.09.028
64. DerryWB, PutzkeAP, RothmanJH (2001) Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294: 591–595 doi:10.1126/science.1065486
65. FischerPM (2009) Cap in hand: targeting eIF4E. Cell Cycle 8: 2535–2541.
66. KeiperB, LamphearB, DeshpandeA, Jankowska-AnyszkaM, AamodtE, et al. (2000) Functional Characterization of Five eIF4E Isoforms in Caenorhabditis elegans. J Biol Chem 275: 10590–10596.
67. HendersonM, CronlandE, DunkelbargerS, ContrerasV, StromeS, et al. (2009) A germline-specific isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes and sperm. J Cell Sci 122: 1529–1539 doi:10.1242/jcs.046771
68. DinkovaT, KeiperB, KorneevaN, AamodtE, RhoadsR (2005) Translation of a small subset of Caenorhabditis elegans mRNAs is dependent on a specific eukaryotic translation initiation factor 4E isoform. Mol Cell Biol 25: 100–113 doi:10.1128/MCB.25.1.100-113.2005
69. GreissS, SchumacherB, GrandienK, RothblattJ, GartnerA (2008) Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family. BMC Genomics 9: 334 doi:1471-2164-9-334
70. DengX, HofmannER, VillanuevaA, HobertO, CapodieciP, et al. (2004) Caenorhabditis elegans ABL-1 antagonizes p53-mediated germline apoptosis after ionizing irradiation. Nat Genet 36: 906–912 doi:10.1038/ng1396
71. RutkowskiR, DickinsonR, StewartG, CraigA, SchimplM, et al. (2011) Regulation of Caenorhabditis elegans p53/CEP-1-dependent germ cell apoptosis by Ras/MAPK signaling. PLoS Genet 7: e1002238 doi:10.1371/journal.pgen.1002238
72. MillerM, NguyenV, LeeM, KosinskiM, SchedlT, et al. (2001) A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291: 2144–2147 doi:10.1126/science.1057586
73. PageBD, GuedesS, WaringD, PriessJR (2001) The C. elegans E2F- and DP-related proteins are required for embryonic asymmetry and negatively regulate Ras/MAPK signaling. Mol Cell 7: 451–460.
74. Sundaram MV (2006) RTK/Ras/MAPK signaling. WormBook, ed. The C. elegans Research Community, http://www.wormbook.org. doi/10.1895/wormbook.1.80.1
75. LeeM-H, HookB, LamontLB, WickensM, KimbleJ (2006) LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO J 25: 88–96 doi:10.1038/sj.emboj.7600901
76. HajnalA, BersetT (2002) The C.elegans MAPK phosphatase LIP-1 is required for the G(2)/M meiotic arrest of developing oocytes. EMBO J 21: 4317–4326.
77. LeeM-H, HookB, PanG, KershnerAM, MerrittC, et al. (2007) Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet 3: e233 doi:10.1371/journal.pgen.0030233
78. BersetT, HoierE, BattuG, CanevasciniS, HajnalA (2001) Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science 291: 1055–1058 doi:10.1126/science.1055642
79. LettreG, KritikouE, JaeggiM, CalixtoA, FraserA, et al. (2004) Genome-wide RNAi identifies p53-dependent and -independent regulators of germ cell apoptosis in C. elegans. Cell Death Differ 11: 1198–1203 doi:10.1038/sj.cdd.4401488
80. KritikouEA, MilsteinS, VidalainP-O, LettreG, BoganE, et al. (2006) C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling pathway required for germ cell survival. Genes Dev 20: 2279–2292 doi:10.1101/gad.384506
81. SternbergPW, HorvitzHR (1986) Pattern formation during vulval development in C. elegans. Cell 44: 761–772.
82. MileyGR, FantzD, GlossipD, LuX, SaitoRM, et al. (2004) Identification of residues of the Caenorhabditis elegans LIN-1 ETS domain that are necessary for DNA binding and regulation of vulval cell fates. Genetics 167: 1697–1709 doi:10.1534/genetics.104.029017
83. KimDH, FeinbaumR, AlloingG, EmersonFE, GarsinDA, et al. (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297: 623–626 doi:10.1126/science.1073759
84. WangS, WuL, WangY, LuoX, LuY (2009) Copper-induced germline apoptosis in Caenorhabditis elegans: the independent roles of DNA damage response signaling and the dependent roles of MAPK cascades. Chem Biol Interact 180: 151–157 doi:10.1016/j.cbi.2009.03.012
85. AballayA, DrenkardE, HilbunLR, AusubelFM (2003) Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway. Curr Biol 13: 47–52.
86. PerrinAJ, GundaM, YuB, YenK, ItoS, et al. (2013) Noncanonical control of C. elegans germline apoptosis by the insulin/IGF-1 and Ras/MAPK signaling pathways. Cell Death Differ 20: 97–107 doi:10.1038/cdd.2012.101
87. KosM, TollerveyD (2010) Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol Cell 37: 809–820 doi:10.1016/j.molcel.2010.02.024
88. GallagherJ, DunbarD, GrannemanS, MitchellB, OsheimY, et al. (2004) RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components. Genes Dev 18: 2506–2517 doi:10.1101/gad.1226604
89. SchneiderDA, MichelA, SikesML, VuL, DoddJA, et al. (2007) Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly. Mol Cell 26: 217–229 doi:10.1016/j.molcel.2007.04.007
90. LeungCK, EmpinadoH, ChoeKP (2012) Depletion of a nucleolar protein activates xenobiotic detoxification genes in Caenorhabditis elegans via Nrf/SKN-1 and p53/CEP-1. Free Radic Biol Med 52: 937–950 doi:10.1016/j.freeradbiomed.2011.12.009
91. BoisvertF-M, van KoningsbruggenS, NavascuésJ, LamondAI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8: 574–585 doi:10.1038/nrm2184
92. DeisenrothC, ZhangY (2010) Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway. Oncogene 29: 4253–4260 doi:10.1038/onc.2010.189
93. FuhrmanLE, GoelAK, SmithJ, ShiannaKV, AballayA (2009) Nucleolar proteins suppress Caenorhabditis elegans innate immunity by inhibiting p53/CEP-1. PLoS Genet 5: e1000657 doi:10.1371/journal.pgen.1000657
94. MeloJA, RuvkunG (2012) Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149: 452–466 doi:10.1016/j.cell.2012.02.050
95. KyriakisJM, AvruchJ (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92: 689–737 doi:10.1152/physrev.00028.2011
96. JunttilaMR, LiS-P, WestermarckJ (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22: 954–965 doi:10.1096/fj.06-7859rev
97. MichaelsonD, KortaD, CapuaY, HubbardE (2010) Insulin signaling promotes germline proliferation in C. elegans. Development 137: 671–680 doi:10.1242/dev.042523
98. HubbardEJA, KortaDZ, DalfóD (2013) Physiological control of germline development. Adv Exp Med Biol 757: 101–131 doi:_10.1007/978-1-4614-4015-4_5
99. BattuG, HoierEF, HajnalA (2003) The C. elegans G-protein-coupled receptor SRA-13 inhibits RAS/MAPK signalling during olfaction and vulval development. Development 130: 2567–2577.
100. GreissS, HallJ, AhmedS, GartnerA (2008) C. elegans SIR-2.1 translocation is linked to a proapoptotic pathway parallel to cep-1/p53 during DNA damage-induced apoptosis. Genes Dev 22: 2831–2842 doi:PMC2569882
101. DengX, YinX, AllanR, LuDD, MaurerCW, et al. (2008) Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 322: 110–115 doi:10.1126/science.1158111
102. RossAJ, LiM, YuB, GaoMX, DerryWB (2011) The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans. Cell Death Differ 18: 1140–1149 doi:10.1038/cdd.2010.180
103. PeiB, WangS, GuoX, WangJ, YangG, et al. (2008) Arsenite-induced germline apoptosis through a MAPK-dependent, p53-independent pathway in Caenorhabditis elegans. Chem Res Toxicol 21: 1530–1535 doi:10.1021/tx800074e
104. SalinasLS, MaldonadoE, NavarroRE (2006) Stress-induced germ cell apoptosis by a p53 independent pathway in Caenorhabditis elegans. Cell Death Differ 13: 2129–2139 doi:10.1038/sj.cdd.4401976
105. PraitisV, CaseyE, CollarD, AustinJ (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157: 1217–1226.
106. Abramoff M, Magalhaes P, Ram S (2004) Image Processing with ImageJ. Biophotonics International. Laurin Publishing Co. Inc., Vol. 11. pp. 36–42.
107. HoogewijsD, HouthoofdK, MatthijssensF, VandesompeleJ, VanfleterenJ (2008) Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol Biol 9: 9 doi:10.1186/1471-2199-9-9
108. GoidinD (2001) Ribosomal 18S RNA Prevails over Glyceraldehyde-3-Phosphate Dehydrogenase and β-Actin Genes as Internal Standard for Quantitative Comparison of mRNA Levels in Invasive and Noninvasive Human Melanoma Cell Subpopulations. Analytical Biochemistry 295: 17–21 doi:10.1006/abio.2001.5171
109. SearleBC (2010) Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 10: 1265–1269 doi:10.1002/pmic.200900437
110. Duerr JS (2006) Immunohistochemistry. WormBook, ed. The C. elegans Research Community, http://www.wormbook.org. doi/10.1895/wormbook.1.105.1
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 11
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in the Neurofibromatosis-1 Growth Deficiency
- RNA∶DNA Hybrids Initiate Quasi-Palindrome-Associated Mutations in Highly Transcribed Yeast DNA
- The Light Skin Allele of in South Asians and Europeans Shares Identity by Descent
- Roles of XRCC2, RAD51B and RAD51D in RAD51-Independent SSA Recombination