#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Decoding a Signature-Based Model of Transcription Cofactor Recruitment Dictated by Cardinal Cis-Regulatory Elements in Proximal Promoter Regions


Genome-wide maps of DNase I hypersensitive sites (DHSs) reveal that most human promoters contain perpetually active cis-regulatory elements between −150 bp and +50 bp (−150/+50 bp) relative to the transcription start site (TSS). Transcription factors (TFs) recruit cofactors (chromatin remodelers, histone/protein-modifying enzymes, and scaffold proteins) to these elements in order to organize the local chromatin structure and coordinate the balance of post-translational modifications nearby, contributing to the overall regulation of transcription. However, the rules of TF-mediated cofactor recruitment to the −150/+50 bp promoter regions remain poorly understood. Here, we provide evidence for a general model in which a series of cis-regulatory elements (here termed ‘cardinal’ motifs) prefer acting individually, rather than in fixed combinations, within the −150/+50 bp regions to recruit TFs that dictate cofactor signatures distinctive of specific promoter subsets. Subsequently, human promoters can be subclassified based on the presence of cardinal elements and their associated cofactor signatures. In this study, furthermore, we have focused on promoters containing the nuclear respiratory factor 1 (NRF1) motif as the cardinal cis-regulatory element and have identified the pervasive association of NRF1 with the cofactor lysine-specific demethylase 1 (LSD1/KDM1A). This signature might be distinctive of promoters regulating nuclear-encoded mitochondrial and other particular genes in at least some cells. Together, we propose that decoding a signature-based, expanded model of control at proximal promoter regions should lead to a better understanding of coordinated regulation of gene transcription.


Vyšlo v časopise: Decoding a Signature-Based Model of Transcription Cofactor Recruitment Dictated by Cardinal Cis-Regulatory Elements in Proximal Promoter Regions. PLoS Genet 9(11): e32767. doi:10.1371/journal.pgen.1003906
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003906

Souhrn

Genome-wide maps of DNase I hypersensitive sites (DHSs) reveal that most human promoters contain perpetually active cis-regulatory elements between −150 bp and +50 bp (−150/+50 bp) relative to the transcription start site (TSS). Transcription factors (TFs) recruit cofactors (chromatin remodelers, histone/protein-modifying enzymes, and scaffold proteins) to these elements in order to organize the local chromatin structure and coordinate the balance of post-translational modifications nearby, contributing to the overall regulation of transcription. However, the rules of TF-mediated cofactor recruitment to the −150/+50 bp promoter regions remain poorly understood. Here, we provide evidence for a general model in which a series of cis-regulatory elements (here termed ‘cardinal’ motifs) prefer acting individually, rather than in fixed combinations, within the −150/+50 bp regions to recruit TFs that dictate cofactor signatures distinctive of specific promoter subsets. Subsequently, human promoters can be subclassified based on the presence of cardinal elements and their associated cofactor signatures. In this study, furthermore, we have focused on promoters containing the nuclear respiratory factor 1 (NRF1) motif as the cardinal cis-regulatory element and have identified the pervasive association of NRF1 with the cofactor lysine-specific demethylase 1 (LSD1/KDM1A). This signature might be distinctive of promoters regulating nuclear-encoded mitochondrial and other particular genes in at least some cells. Together, we propose that decoding a signature-based, expanded model of control at proximal promoter regions should lead to a better understanding of coordinated regulation of gene transcription.


Zdroje

1. GrossDS, GarrardWT (1988) Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 57: 159–197 doi:10.1146/annurev.bi.57.070188.001111

2. ThurmanRE, RynesE, HumbertR, VierstraJ, MauranoMT, et al. (2012) The accessible chromatin landscape of the human genome. Nature 489: 75–82 doi:10.1038/nature11232

3. NephS, VierstraJ, StergachisAB, ReynoldsAP, HaugenE, et al. (2012) An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489: 83–90 doi:10.1038/nature11212

4. MauranoMT, HumbertR, RynesE, ThurmanRE, HaugenE, et al. (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337: 1190–1195 doi:10.1126/science.1222794

5. Juven-GershonT, HsuJ-Y, TheisenJW, KadonagaJT (2008) The RNA polymerase II core promoter - the gateway to transcription. Curr Opin Cell Biol 20: 253–259 doi:10.1016/j.ceb.2008.03.003

6. Juven-GershonT, KadonagaJT (2010) Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339: 225–229 doi:10.1016/j.ydbio.2009.08.009

7. SandelinA, CarninciP, LenhardB, PonjavicJ, HayashizakiY, et al. (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 8: 424–436 doi:10.1038/nrg2026

8. CarninciP, SandelinA, LenhardB, KatayamaS, ShimokawaK, et al. (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38: 626–635 doi:10.1038/ng1789

9. HeintzmanND, StuartRK, HonG, FuY, ChingCW, et al. (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39: 311–318 doi:10.1038/ng1966

10. GiresiPG, KimJ, McDaniellRM, IyerVR, LiebJD (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17: 877–885 doi:10.1101/gr.5533506

11. OzsolakF, SongJS, LiuXS, FisherDE (2007) High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 25: 244–248 doi:10.1038/nbt1279

12. XiH, ShulhaHP, LinJM, ValesTR, FuY, et al. (2007) Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet 3: e136 doi:10.1371/journal.pgen.0030136

13. BarskiA, CuddapahS, CuiK, RohT-Y, SchonesDE, et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823–837 doi:10.1016/j.cell.2007.05.009

14. BaumannM, PontillerJ, ErnstW (2010) Structure and basal transcription complex of RNA polymerase II core promoters in the mammalian genome: an overview. Mol Biotechnol 45: 241–247 doi:10.1007/s12033-010-9265-6

15. TjianR, ManiatisT (1994) Transcriptional activation: a complex puzzle with few easy pieces. Cell 77: 5–8.

16. ShandilyaJ, RobertsSGE (2012) The transcription cycle in eukaryotes: From productive initiation to RNA polymerase II recycling. Biochim Biophys Acta 1819: 391–400 doi:10.1016/j.bbagrm.2012.01.010

17. HeintzmanND, RenB (2007) The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome. Cell Mol Life Sci 64: 386–400 doi:10.1007/s00018-006-6295-0

18. LiJ, GilmourDS (2011) Promoter proximal pausing and the control of gene expression. Curr Opin Genet Dev 21: 231–235 doi:10.1016/j.gde.2011.01.010

19. CarrollJS, LiuXS, BrodskyAS, LiW, MeyerCA, et al. (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122: 33–43 doi:10.1016/j.cell.2005.05.008

20. VerziMP, ShinH, HeHH, SulahianR, MeyerCA, et al. (2010) Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2. Dev Cell 19: 713–726 doi:10.1016/j.devcel.2010.10.006

21. LupienM, EeckhouteJ, MeyerCA, WangQ, ZhangY, et al. (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132: 958–970 doi:10.1016/j.cell.2008.01.018

22. WangD, Garcia-BassetsI, BennerC, LiW, SuX, et al. (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474: 390–394 doi:10.1038/nature10006

23. HeinzS, BennerC, SpannN, BertolinoE, LinYC, et al. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38: 576–589 doi:10.1016/j.molcel.2010.05.004

24. BlackledgeNP, ZhouJC, TolstorukovMY, FarcasAM, ParkPJ, et al. (2010) CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell 38: 179–190 doi:10.1016/j.molcel.2010.04.009

25. BarberMF, Michishita-KioiE, XiY, TasselliL, KioiM, et al. (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487: 114–118 doi:10.1038/nature11043

26. De SantaF, NarangV, YapZH, TusiBK, BurgoldT, et al. (2009) Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 28: 3341–3352 doi:10.1038/emboj.2009.271

27. LiuW, TanasaB, TyurinaOV, ZhouTY, GassmannR, et al. (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466: 508–512 doi:10.1038/nature09272

28. PasiniD, CloosPAC, WalfridssonJ, OlssonL, BukowskiJ-P, et al. (2010) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464: 306–310 doi:10.1038/nature08788

29. PengJC, ValouevA, SwigutT, ZhangJ, ZhaoY, et al. (2009) Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139: 1290–1302 doi:10.1016/j.cell.2009.12.002

30. RamO, GorenA, AmitI, ShoreshN, YosefN, et al. (2011) Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 147: 1628–1639 doi:10.1016/j.cell.2011.09.057

31. SchmitzSU, AlbertM, MalatestaM, MoreyL, JohansenJV, et al. (2011) Jarid1b targets genes regulating development and is involved in neural differentiation. EMBO J 30: 4586–4600 doi:10.1038/emboj.2011.383

32. WangZ, ZangC, CuiK, SchonesDE, BarskiA, et al. (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138: 1019–1031 doi:10.1016/j.cell.2009.06.049

33. BlackJC, Van RechemC, WhetstineJR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48: 491–507 doi:10.1016/j.molcel.2012.11.006

34. LiG, MargueronR, KuM, ChambonP, BernsteinBE, et al. (2010) Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 24: 368–380 doi:10.1101/gad.1886410

35. DeatonAM, BirdA (2011) CpG islands and the regulation of transcription. Genes Dev 25: 1010–1022 doi:10.1101/gad.2037511

36. LandolinJM, JohnsonDS, TrinkleinND, AldredSF, MedinaC, et al. (2010) Sequence features that drive human promoter function and tissue specificity. Genome Res 20: 890–898 doi:10.1101/gr.100370.109

37. FitzGeraldPC, ShlyakhtenkoA, MirAA, VinsonC (2004) Clustering of DNA sequences in human promoters. Genome Res 14: 1562–1574 doi:10.1101/gr.1953904

38. XieX, LuJ, KulbokasEJ, GolubTR, MoothaV, et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434: 338–345 doi:10.1038/nature03441

39. KimT-K, HembergM, GrayJM, CostaAM, BearDM, et al. (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465: 182–187 doi:10.1038/nature09033

40. MendenhallEM, KocheRP, TruongT, ZhouVW, IssacB, et al. (2010) GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet 6: e1001244 doi:10.1371/journal.pgen.1001244

41. BiedaM, XuX, SingerMA, GreenR, FarnhamPJ (2006) Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res 16: 595–605 doi:10.1101/gr.4887606

42. TabachY, BroshR, BuganimY, ReinerA, ZukO, et al. (2007) Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site. PLoS ONE 2: e807 doi:10.1371/journal.pone.0000807

43. YokoyamaKD, OhlerU, WrayGA (2009) Measuring spatial preferences at fine-scale resolution identifies known and novel cis-regulatory element candidates and functional motif-pair relationships. Nucleic Acids Res 37: e92 doi:10.1093/nar/gkp423

44. XiH, YuY, FuY, FoleyJ, HaleesA, et al. (2007) Analysis of overrepresented motifs in human core promoters reveals dual regulatory roles of YY1. Genome Res 17: 798–806 doi:10.1101/gr.5754707

45. Van HeeringenSJ, AkhtarW, JacobiUG, AkkersRC, SuzukiY, et al. (2011) Nucleotide composition-linked divergence of vertebrate core promoter architecture. Genome Res 21: 410–421 doi:10.1101/gr.111724.110

46. RaghavSK, WaszakSM, KrierI, GubelmannC, IsakovaA, et al. (2012) Integrative genomics identifies the corepressor SMRT as a gatekeeper of adipogenesis through the transcription factors C/EBPβ and KAISO. Mol Cell 46: 335–350 doi:10.1016/j.molcel.2012.03.017

47. DejosezM, LevineSS, FramptonGM, WhyteWA, StrattonSA, et al. (2010) Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes Dev 24: 1479–1484 doi:10.1101/gad.1935210

48. ScarpullaRC (2008) Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci 1147: 321–334 doi:10.1196/annals.1427.006

49. DolfiniD, GattaR, MantovaniR (2012) NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 47: 29–49 doi:10.3109/10409238.2011.628970

50. KwonY-S, Garcia-BassetsI, HuttKR, ChengCS, JinM, et al. (2007) Sensitive ChIP-DSL technology reveals an extensive estrogen receptor alpha-binding program on human gene promoters. Proc Natl Acad Sci USA 104: 4852–4857 doi:10.1073/pnas.0700715104

51. KloseRJ, KallinEM, ZhangY (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7: 715–727 doi:10.1038/nrg1945

52. LanF, NottkeAC, ShiY (2008) Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol 20: 316–325 doi:10.1016/j.ceb.2008.03.004

53. Garcia-BassetsI, KwonY-S, TeleseF, PrefontaineGG, HuttKR, et al. (2007) Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128: 505–518 doi:10.1016/j.cell.2006.12.038

54. WhyteWA, BilodeauS, OrlandoDA, HokeHA, FramptonGM, et al. (2012) Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482: 221–225 doi:10.1038/nature10805

55. Garcia-BassetsI, WangD (2012) Cistrome plasticity and mechanisms of cistrome reprogramming. Cell Cycle 11: 3199–3210 doi:10.4161/cc.21281

56. ShiY-J, MatsonC, LanF, IwaseS, BabaT, et al. (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19: 857–864 doi:10.1016/j.molcel.2005.08.027

57. FornerisF, BindaC, VanoniMA, BattaglioliE, MatteviA (2005) Human histone demethylase LSD1 reads the histone code. J Biol Chem 280: 41360–41365 doi:10.1074/jbc.M509549200

58. LeeMG, WynderC, CoochN, ShiekhattarR (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437: 432–435 doi:10.1038/nature04021

59. NairSS, NairBC, CortezV, ChakravartyD, MetzgerE, et al. (2010) PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor-alpha target gene activation by regulating lysine demethylase 1 specificity. EMBO Rep 11: 438–444 doi:10.1038/embor.2010.62

60. WangJ, ScullyK, ZhuX, CaiL, ZhangJ, et al. (2007) Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446: 882–887 doi:10.1038/nature05671

61. MusriMM, CarmonaMC, HanzuFA, KalimanP, GomisR, et al. (2010) Histone demethylase LSD1 regulates adipogenesis. J Biol Chem 285: 30034–30041 doi:10.1074/jbc.M110.151209

62. CooperSJ, TrinkleinND, AntonED, NguyenL, MyersRM (2006) Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome. Genome Res 16: 1–10 doi:10.1101/gr.4222606

63. TijssenMR, CvejicA, JoshiA, HannahRL, FerreiraR, et al. (2011) Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev Cell 20: 597–609 doi:10.1016/j.devcel.2011.04.008

64. SmithKT, CoffeeB, ReinesD (2004) Occupancy and synergistic activation of the FMR1 promoter by Nrf-1 and Sp1 in vivo. Hum Mol Genet 13: 1611–1621 doi:10.1093/hmg/ddh172

65. RothenederH, GeymayerS, HaidwegerE (1999) Transcription factors of the Sp1 family: interaction with E2F and regulation of the murine thymidine kinase promoter. J Mol Biol 293: 1005–1015 doi:10.1006/jmbi.1999.3213

66. ZhouQ, EngelDA (1995) Adenovirus E1A243 disrupts the ATF/CREB-YY1 complex at the mouse c-fos promoter. J Virol 69: 7402–7409.

67. KapatosG, VunnavaP, WuY (2007) Protein kinase A-dependent recruitment of RNA polymerase II, C/EBP beta and NF-Y to the rat GTP cyclohydrolase I proximal promoter occurs without alterations in histone acetylation. J Neurochem 101: 1119–1133 doi:10.1111/j.1471-4159.2007.04486.x

68. KrampsC, StriederV, SapetschnigA, SuskeG, LutzW (2004) E2F and Sp1/Sp3 Synergize but are not sufficient to activate the MYCN gene in neuroblastomas. J Biol Chem 279: 5110–5117 doi:10.1074/jbc.M304758200

69. ZaretKS, CarrollJS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25: 2227–2241 doi:10.1101/gad.176826.111

70. NardiniM, GnesuttaN, DonatiG, GattaR, ForniC, et al. (2013) Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell 152: 132–143 doi:10.1016/j.cell.2012.11.047

71. ShiY, LanF, MatsonC, MulliganP, WhetstineJR, et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119: 941–953 doi:10.1016/j.cell.2004.12.012

72. GreerEL, ShiY (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13: 343–357 doi:10.1038/nrg3173

73. KooistraSM, HelinK (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 13: 297–311 doi:10.1038/nrm3327

74. NicolasE, LeeMG, HakimiM-A, CamHP, GrewalSIS, et al. (2006) Fission yeast homologs of human histone H3 lysine 4 demethylase regulate a common set of genes with diverse functions. J Biol Chem 281: 35983–35988 doi:10.1074/jbc.M606349200

75. HinoS, SakamotoA, NagaokaK, AnanK, WangY, et al. (2012) FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun 3: 758 doi:10.1038/ncomms1755

76. VafaiSB, MoothaVK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491: 374–383 doi:10.1038/nature11707

77. PagliariniDJ, CalvoSE, ChangB, ShethSA, VafaiSB, et al. (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134: 112–123 doi:10.1016/j.cell.2008.06.016

78. NakamuraT, MoriT, TadaS, KrajewskiW, RozovskaiaT, et al. (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10: 1119–1128.

79. GuentherMG, JennerRG, ChevalierB, NakamuraT, CroceCM, et al. (2005) Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci USA 102: 8603–8608 doi:10.1073/pnas.0503072102

80. SalequeS, KimJ, RookeHM, OrkinSH (2007) Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell 27: 562–572 doi:10.1016/j.molcel.2007.06.039

81. TsaiM-C, ManorO, WanY, MosammaparastN, WangJK, et al. (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329: 689–693 doi:10.1126/science.1192002

82. LiangY, VogelJL, NarayananA, PengH, KristieTM (2009) Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat Med 15: 1312–1317 doi:10.1038/nm.2051

83. NairVD, GeY, BalasubramaniyanN, KimJ, OkawaY, et al. (2012) Involvement of histone demethylase LSD1 in short-time-scale gene expression changes during cell cycle progression in embryonic stem cells. Mol Cell Biol 32: 4861–4876 doi:10.1128/MCB.00816-12

84. YuhCH, BolouriH, DavidsonEH (1998) Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279: 1896–1902.

85. WelborenW-J, van DrielMA, Janssen-MegensEM, van HeeringenSJ, SweepFC, et al. (2009) ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. EMBO J 28: 1418–1428 doi:10.1038/emboj.2009.88

86. LiW, NotaniD, MaQ, TanasaB, NunezE, et al. (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498: 516–520 doi:10.1038/nature12210

87. HeHH, MeyerCA, ChenMW, JordanVC, BrownM, et al. (2012) Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res 22: 1015–1025 doi:10.1101/gr.133280.111

88. BannisterAJ, KouzaridesT (1996) The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643 doi:10.1038/384641a0

89. AndrewsNC, FallerDV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19: 2499.

90. García-BassetsI, Ortiz-LombardíaM, PagansS, RomeroA, CanalsF, et al. (1999) The identification of nuclear proteins that bind the homopyrimidine strand of d(GA.TC)n DNA sequences, but not the homopurine strand. Nucleic Acids Res 27: 3267–3275.

91. DennisGJr, ShermanBT, HosackDA, YangJ, GaoW, et al. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4: P3.

92. ClineMS, SmootM, CeramiE, KuchinskyA, LandysN, et al. (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2: 2366–2382 doi:10.1038/nprot.2007.324

93. GaoJ, AdeAS, TarceaVG, WeymouthTE, MirelBR, et al. (2009) Integrating and annotating the interactome using the MiMI plugin for cytoscape. Bioinformatics 25: 137–138 doi:10.1093/bioinformatics/btn501

94. BaderGD, HogueCWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2.

95. DonchevaNT, AssenovY, DominguesFS, AlbrechtM (2012) Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 7: 670–685 doi:10.1038/nprot.2012.004

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#