DUX4 Binding to Retroelements Creates Promoters That Are Active in FSHD Muscle and Testis
The human double-homeodomain retrogene DUX4 is expressed in the testis and epigenetically repressed in somatic tissues. Facioscapulohumeral muscular dystrophy (FSHD) is caused by mutations that decrease the epigenetic repression of DUX4 in somatic tissues and result in mis-expression of this transcription factor in skeletal muscle. DUX4 binds sites in the human genome that contain a double-homeobox sequence motif, including sites in unique regions of the genome as well as many sites in repetitive elements. Using ChIP-seq and RNA-seq on myoblasts transduced with DUX4 we show that DUX4 binds and activates transcription of mammalian apparent LTR-retrotransposons (MaLRs), endogenous retrovirus (ERVL and ERVK) elements, and pericentromeric satellite HSATII sequences. Some DUX4-activated MaLR and ERV elements create novel promoters for genes, long non-coding RNAs, and antisense transcripts. Many of these novel transcripts are expressed in FSHD muscle cells but not control cells, and thus might contribute to FSHD pathology. For example, HEY1, a repressor of myogenesis, is activated by DUX4 through a MaLR promoter. DUX4-bound motifs, including those in repetitive elements, show evolutionary conservation and some repeat-initiated transcripts are expressed in healthy testis, the normal expression site of DUX4, but more rarely in other somatic tissues. Testis expression patterns are known to have evolved rapidly in mammals, but the mechanisms behind this rapid change have not yet been identified: our results suggest that mobilization of MaLR and ERV elements during mammalian evolution altered germline gene expression patterns through transcriptional activation by DUX4. Our findings demonstrate a role for DUX4 and repetitive elements in mammalian germline evolution and in FSHD muscular dystrophy.
Vyšlo v časopise:
DUX4 Binding to Retroelements Creates Promoters That Are Active in FSHD Muscle and Testis. PLoS Genet 9(11): e32767. doi:10.1371/journal.pgen.1003947
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003947
Souhrn
The human double-homeodomain retrogene DUX4 is expressed in the testis and epigenetically repressed in somatic tissues. Facioscapulohumeral muscular dystrophy (FSHD) is caused by mutations that decrease the epigenetic repression of DUX4 in somatic tissues and result in mis-expression of this transcription factor in skeletal muscle. DUX4 binds sites in the human genome that contain a double-homeobox sequence motif, including sites in unique regions of the genome as well as many sites in repetitive elements. Using ChIP-seq and RNA-seq on myoblasts transduced with DUX4 we show that DUX4 binds and activates transcription of mammalian apparent LTR-retrotransposons (MaLRs), endogenous retrovirus (ERVL and ERVK) elements, and pericentromeric satellite HSATII sequences. Some DUX4-activated MaLR and ERV elements create novel promoters for genes, long non-coding RNAs, and antisense transcripts. Many of these novel transcripts are expressed in FSHD muscle cells but not control cells, and thus might contribute to FSHD pathology. For example, HEY1, a repressor of myogenesis, is activated by DUX4 through a MaLR promoter. DUX4-bound motifs, including those in repetitive elements, show evolutionary conservation and some repeat-initiated transcripts are expressed in healthy testis, the normal expression site of DUX4, but more rarely in other somatic tissues. Testis expression patterns are known to have evolved rapidly in mammals, but the mechanisms behind this rapid change have not yet been identified: our results suggest that mobilization of MaLR and ERV elements during mammalian evolution altered germline gene expression patterns through transcriptional activation by DUX4. Our findings demonstrate a role for DUX4 and repetitive elements in mammalian germline evolution and in FSHD muscular dystrophy.
Zdroje
1. ClappJ, MitchellLM, BollandDJ, FantesJ, CorcoranAE, et al. (2007) Evolutionary conservation of a coding function for D4Z4, the tandem DNA repeat mutated in facioscapulohumeral muscular dystrophy. Am J Hum Genet 81: 264–279.
2. LeidenrothA, HewittJE (2010) A family history of DUX4: phylogenetic analysis of DUXA, B, C and Duxbl reveals the ancestral DUX gene. BMC Evol Biol 10: 364.
3. LeidenrothA, ClappJ, MitchellLM, ConeyworthD, DeardenFL, et al. (2012) Evolution of DUX gene macrosatellites in placental mammals. Chromosoma 121: 489–497.
4. LyleR, WrightTJ, ClarkLN, HewittJE (1995) The FSHD-associated repeat, D4Z4, is a member of a dispersed family of homeobox-containing repeats, subsets of which are clustered on the short arms of the acrocentric chromosomes. Genomics 28: 389–397.
5. SchmidtJ, KirschS, RappoldGA, SchemppW (2009) Complex evolution of a Y-chromosomal double homeobox 4 (DUX4)-related gene family in hominoids. PLoS ONE 4: e5288.
6. WijmengaC, HewittJE, SandkuijlLA, ClarkLN, WrightTJ, et al. (1992) Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 2: 26–30.
7. RuddMK, EndicottRM, FriedmanC, WalkerM, YoungJM, et al. (2009) Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event. Genome Res 19: 33–41.
8. SniderL, AsawachaicharnA, TylerAE, GengLN, PetekLM, et al. (2009) RNA transcripts, miRNA-sized fragments and proteins produced from D4Z4 units: new candidates for the pathophysiology of facioscapulohumeral dystrophy. Hum Mol Genet 18: 2414–2430.
9. SniderL, GengLN, LemmersRJ, KybaM, WareCB, et al. (2010) Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet 6: e1001181.
10. GengLN, YaoZ, SniderL, FongAP, CechJN, et al. (2012) DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell 22: 38–51.
11. KromYD, ThijssenPE, YoungJM, den HamerB, BalogJ, et al. (2013) Intrinsic epigenetic regulation of the D4Z4 macrosatellite repeat in a transgenic mouse model for FSHD. PLoS Genet 9: e1003415.
12. van der MaarelSM, TawilR, TapscottSJ (2011) Facioscapulohumeral muscular dystrophy and DUX4: breaking the silence. Trends Mol Med 17: 252–258.
13. LemmersRJ, van der VlietPJ, KloosterR, SacconiS, CamanoP, et al. (2010) A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329: 1650–1653.
14. LemmersRJ, TawilR, PetekLM, BalogJ, BlockGJ, et al. (2012) Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet 44: 1370–1374.
15. RichardsM, CoppeeF, ThomasN, BelayewA, UpadhyayaM (2012) Facioscapulohumeral muscular dystrophy (FSHD): an enigma unravelled? Hum Genet 131: 325–340.
16. JonesTI, ChenJC, RahimovF, HommaS, ArashiroP, et al. (2012) Facioscapulohumeral muscular dystrophy family studies of DUX4 expression: evidence for disease modifiers and a quantitative model of pathogenesis. Hum Mol Genet 21: 4419–4430.
17. KowaljowV, MarcowyczA, AnsseauE, CondeCB, SauvageS, et al. (2007) The DUX4 gene at the FSHD1A locus encodes a pro-apoptotic protein. Neuromuscul Disord 17: 611–623.
18. BosnakovskiD, XuZ, GangEJ, GalindoCL, LiuM, et al. (2008) An isogenetic myoblast expression screen identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO J 27: 2766–2779.
19. BlockGJ, NarayananD, AmellAM, PetekLM, DavidsonKC, et al. (2013) Wnt/beta-catenin signaling suppresses DUX4 expression and prevents apoptosis of FSHD muscle cells. Hum Mol Genet E-pub ahead of print.
20. SmitAF (1993) Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucleic Acids Res 21: 1863–1872.
21. LanderES, LintonLM, BirrenB, NusbaumC, ZodyMC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.
22. FeschotteC, GilbertC (2012) Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet 13: 283–296.
23. BannertN, KurthR (2006) The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genom 7: 149–173.
24. JurkaJ, KapitonovVV, PavlicekA, KlonowskiP, KohanyO, et al. (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110: 462–467.
25. TurnerG, BarbulescuM, SuM, Jensen-SeamanMI, KiddKK, et al. (2001) Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol 11: 1531–1535.
26. LeeE, IskowR, YangL, GokcumenO, HaseleyP, et al. (2012) Landscape of somatic retrotransposition in human cancers. Science 337: 967–971.
27. FeschotteC (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9: 397–405.
28. CowleyM, OakeyRJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet 9: e1003234.
29. WangT, ZengJ, LoweCB, SellersRG, SalamaSR, et al. (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci USA 104: 18613–18618.
30. BourqueG, LeongB, VegaVB, ChenX, LeeYL, et al. (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18: 1752–1762.
31. KunarsoG, ChiaNY, JeyakaniJ, HwangC, LuX, et al. (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42: 631–634.
32. CohenCJ, LockWM, MagerDL (2009) Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448: 105–114.
33. FaulknerGJ, KimuraY, DaubCO, WaniS, PlessyC, et al. (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41: 563–571.
34. LynchVJ, LeclercRD, MayG, WagnerGP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43: 1154–1159.
35. BrawandD, SoumillonM, NecsuleaA, JulienP, CsardiG, et al. (2011) The evolution of gene expression levels in mammalian organs. Nature 478: 343–348.
36. TreangenTJ, SalzbergSL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13: 36–46.
37. DayDS, LuquetteLJ, ParkPJ, KharchenkoPV (2010) Estimating enrichment of repetitive elements from high-throughput sequence data. Genome Biol 11: R69.
38. WangH, XingJ, GroverD, HedgesDJ, HanK, et al. (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354: 994–1007.
39. McLeanCY, BristorD, HillerM, ClarkeSL, SchaarBT, et al. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28: 495–501.
40. BuasMF, KabakS, KadeschT (2010) The Notch effector Hey1 associates with myogenic target genes to repress myogenesis. J Biol Chem 285: 1249–1258.
41. HedgesSB, DudleyJ, KumarS (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22: 2971–2972.
42. CabiliMN, TrapnellC, GoffL, KoziolM, Tazon-VegaB, et al. (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25: 1915–1927.
43. KelleyD, RinnJ (2012) Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13: R107.
44. KapustaA, KronenbergZ, LynchVJ, ZhuoX, RamsayL, et al. (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9: e1003470.
45. SmitAFA (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9: 657–663.
46. MiS, LeeX, LiX, VeldmanGM, FinnertyH, et al. (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785–789.
47. McClintockB (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36: 344–355.
48. PeastonAE, EvsikovAV, GraberJH, de VriesWN, HolbrookAE, et al. (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7: 597–606.
49. NaganoT, FraserP (2011) No-nonsense functions for long noncoding RNAs. Cell 145: 178–181.
50. CarrieriC, CimattiL, BiagioliM, BeugnetA, ZucchelliS, et al. (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491: 454–457.
51. SiomiMC, SatoK, PezicD, AravinAA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12: 246–258.
52. RoweHM, TronoD (2011) Dynamic control of endogenous retroviruses during development. Virology 411: 273–287.
53. MatsuiT, LeungD, MiyashitaH, MaksakovaIA, MiyachiH, et al. (2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464: 927–931.
54. RoweHM, JakobssonJ, MesnardD, RougemontJ, ReynardS, et al. (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463: 237–240.
55. WolfD, GoffSP (2009) Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458: 1201–1204.
56. ThomasJH, SchneiderS (2011) Coevolution of retroelements and tandem zinc finger genes. Genome Res 21: 1800–1812.
57. KhalilAM, DriscollDJ (2010) Epigenetic regulation of pericentromeric heterochromatin during mammalian meiosis. Cytogenet Genome Res 129: 280–289.
58. ChanFL, WongLH (2012) Transcription in the maintenance of centromere chromatin identity. Nucleic Acids Res 40: 11178–11188.
59. WallaceLM, GarwickSE, MeiW, BelayewA, CoppeeF, et al. (2011) DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol 69: 540–552.
60. WuebblesRD, LongSW, HanelML, JonesPL (2010) Testing the effects of FSHD candidate gene expression in vertebrate muscle development. Int J Clin Exp Pathol 3: 386–400.
61. VanderplanckC, AnsseauE, CharronS, StricwantN, TassinA, et al. (2011) The FSHD atrophic myotube phenotype is caused by DUX4 expression. PLoS ONE 6: e26820.
62. ZhuQ, PaoGM, HuynhAM, SuhH, TonnuN, et al. (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477: 179–184.
63. Bouzinba-SegardH, GuaisA, FrancastelC (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci U S A 103: 8709–8714.
64. CiancioloGJ, CopelandTD, OroszlanS, SnydermanR (1985) Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science 230: 453–455.
65. MolnarM, DioszeghyP, MechlerF (1991) Inflammatory changes in facioscapulohumeral muscular dystrophy. Eur Arch Psychiatry Clin Neurosci 241: 105–108.
66. FrisulloG, FruscianteR, NocitiV, TascaG, RennaR, et al. (2011) CD8(+) T cells in facioscapulohumeral muscular dystrophy patients with inflammatory features at muscle MRI. J Clin Immunol 31: 155–166.
67. TingDT, LipsonD, PaulS, BranniganBW, AkhavanfardS, et al. (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331: 593–596.
68. LamprechtB, WalterK, KreherS, KumarR, HummelM, et al. (2010) Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med 16: 571–579.
69. FragaMF, BallestarE, Villar-GareaA, Boix-ChornetM, EspadaJ, et al. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391–400.
70. NoyesMB, ChristensenRG, WakabayashiA, StormoGD, BrodskyMH, et al. (2008) Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 133: 1277–1289.
71. IhakaR, GentlemanR (1996) A language for data analysis and graphics. J Comput Graph Stat 5: 299–314.
72. GentlemanRC, CareyVJ, BatesDM, BolstadB, DettlingM, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
73. LawrenceM, HuberW, PagesH, AboyounP, CarlsonM, et al. (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9: e1003118.
74. StajichJE, BlockD, BoulezK, BrennerSE, ChervitzSA, et al. (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12: 1611–1618.
75. DreszerTR, KarolchikD, ZweigAS, HinrichsAS, RaneyBJ, et al. (2012) The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Res 40: D918–923.
76. PruittKD, TatusovaT, MaglottDR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33: D501–504.
77. PollardKS, HubiszMJ, RosenbloomKR, SiepelA (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20: 110–121.
78. Smit AF, Hubley R, Green P (1996–2004) RepeatMasker Open-3.0. http://www.repeatmasker.org.
79. FalconS, GentlemanR (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23: 257–258.
80. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.
81. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
82. CordauxR, BatzerMA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10: 691–703.
83. TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111.
84. QuinlanAR, HallIM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842.
85. AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106.
86. AltschulSF, MaddenTL, SchafferAA, ZhangJ, ZhangZ, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
87. RobinsonJT, ThorvaldsdottirH, WincklerW, GuttmanM, LanderES, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26.
88. KentWJ, SugnetCW, FureyTS, RoskinKM, PringleTH, et al. (2002) The human genome browser at UCSC. Genome Res 12: 996–1006.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 11
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in the Neurofibromatosis-1 Growth Deficiency
- RNA∶DNA Hybrids Initiate Quasi-Palindrome-Associated Mutations in Highly Transcribed Yeast DNA
- The Light Skin Allele of in South Asians and Europeans Shares Identity by Descent
- Roles of XRCC2, RAD51B and RAD51D in RAD51-Independent SSA Recombination