#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Whole Genome, Whole Population Sequencing Reveals That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant Environment


Molecular signaling networks are ubiquitous across life and likely evolved to allow organisms to sense and respond to environmental change in dynamic environments. Few examples exist regarding the dispensability of signaling networks, and it remains unclear whether they are an essential feature of a highly adapted biological system. Here, we show that signaling network function carries a fitness cost in yeast evolving in a constant environment. We performed whole-genome, whole-population Illumina sequencing on replicate evolution experiments and find the major theme of adaptive evolution in a constant environment is the disruption of signaling networks responsible for regulating the response to environmental perturbations. Over half of all identified mutations occurred in three major signaling networks that regulate growth control: glucose signaling, Ras/cAMP/PKA and HOG. This results in a loss of environmental sensitivity that is reproducible across experiments. However, adaptive clones show reduced viability under starvation conditions, demonstrating an evolutionary tradeoff. These mutations are beneficial in an environment with a constant and predictable nutrient supply, likely because they result in constitutive growth, but reduce fitness in an environment where nutrient supply is not constant. Our results are a clear example of the myopic nature of evolution: a loss of environmental sensitivity in a constant environment is adaptive in the short term, but maladaptive should the environment change.


Vyšlo v časopise: Whole Genome, Whole Population Sequencing Reveals That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant Environment. PLoS Genet 9(11): e32767. doi:10.1371/journal.pgen.1003972
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003972

Souhrn

Molecular signaling networks are ubiquitous across life and likely evolved to allow organisms to sense and respond to environmental change in dynamic environments. Few examples exist regarding the dispensability of signaling networks, and it remains unclear whether they are an essential feature of a highly adapted biological system. Here, we show that signaling network function carries a fitness cost in yeast evolving in a constant environment. We performed whole-genome, whole-population Illumina sequencing on replicate evolution experiments and find the major theme of adaptive evolution in a constant environment is the disruption of signaling networks responsible for regulating the response to environmental perturbations. Over half of all identified mutations occurred in three major signaling networks that regulate growth control: glucose signaling, Ras/cAMP/PKA and HOG. This results in a loss of environmental sensitivity that is reproducible across experiments. However, adaptive clones show reduced viability under starvation conditions, demonstrating an evolutionary tradeoff. These mutations are beneficial in an environment with a constant and predictable nutrient supply, likely because they result in constitutive growth, but reduce fitness in an environment where nutrient supply is not constant. Our results are a clear example of the myopic nature of evolution: a loss of environmental sensitivity in a constant environment is adaptive in the short term, but maladaptive should the environment change.


Zdroje

1. Fisher RA (1930) The genetical theory of natural selection. Oxford University Press

2. PerfeitoL, FernandesL, MotaC, GordoI (2007) Adaptive mutations in bacteria: high rate and small effects. Science 317: 813–815 doi:10.1126/science.1142284

3. OrrHA (2005) The genetic theory of adaptation: a brief history. Nat Rev Genet 6: 119–127 doi:10.1038/nrg1523

4. CrozatE, PhilippeN, LenskiRE, GeiselmannJ, SchneiderD (2005) Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics 169: 523–532 doi:10.1534/genetics.104.035717

5. WoodsR, SchneiderD, WinkworthCL, RileyMA, LenskiRE (2006) Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc Natl Acad Sci USA 103: 9107–9112 doi:10.1073/pnas.0602917103

6. KinnersleyMA, HolbenWE, RosenzweigF (2009) E Unibus Plurum: genomic analysis of an experimentally evolved polymorphism in Escherichia coli. PLoS Genet 5: e1000713 doi:10.1371/journal.pgen.1000713

7. CooperTF, RozenDE, LenskiRE (2003) Parallel changes in gene expression after 20,000 generations of evolution in Escherichiacoli. Proc Natl Acad Sci USA 100: 1072–1077 doi:10.1073/pnas.0334340100

8. CooperVS, SchneiderD, BlotM, LenskiRE (2001) Mechanisms Causing Rapid and Parallel Losses of Ribose Catabolism in Evolving Populations of Escherichia coli B. J Bacteriol 183: 2834–2841 doi:10.1128/JB.183.9.2834-2841.2001

9. GreshamD, UsaiteR, GermannSM, LisbyM, BotsteinD, et al. (2010) Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc Natl Acad Sci USA 107: 18551–18556 doi:10.1073/pnas.1014023107

10. DunhamMJ, BadraneH, FereaT, AdamsJ, BrownPO, et al. (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99: 16144–16149 doi:10.1073/pnas.242624799

11. GreshamD, DesaiMM, TuckerCM, JenqHT, PaiDA, et al. (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4: e1000303 doi:10.1371/journal.pgen.1000303

12. KaoKC, SherlockG (2008) Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40: 1499–1504 doi:10.1038/ng.280

13. ArayaCL, PayenC, DunhamMJ, FieldsS (2010) Whole-genome sequencing of a laboratory-evolved yeast strain. BMC Genomics 11: 88 doi:10.1186/1471-2164-11-88

14. TenaillonO, Rodriguez-VerdugoA, GautRL, McDonaldP, BennettAF, et al. (2012) The Molecular Diversity of Adaptive Convergence. Science 335: 457–461 doi:10.1126/science.1212986

15. WichmanHA, BadgettMR, ScottLA, BoulianneCM (1999) Different trajectories of parallel evolution during viral adaptation. Science 285: 422–424.

16. BarrickJE, YuDS, YoonSH, JeongH, OhTK, et al. (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461: 1243–1247 doi:10.1038/nature08480

17. BarrickJE, LenskiRE (2009) Genome-wide mutational diversity in an evolving population of Escherichia coli. Cold Spring Harbor Symposia on Quantitative Biology 74: 119–129 doi:10.1101/sqb.2009.74.018

18. HerronMD, DoebeliM (2013) Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol 11: e1001490 doi:10.1371/journal.pbio.1001490

19. GerrishPJ, LenskiRE (1998) The fate of competing beneficial mutations in an asexual population. Genetica 102–103: 127–144.

20. GoodBH, RouzineIM, BalickDJ, HallatschekO, DesaiMM (2012) Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc Natl Acad Sci USA 109: 4950–4955 doi:10.1073/pnas.1119910109

21. DesaiMM, FisherDS (2007) Beneficial mutation selection balance and the effect of linkage on positive selection. Genetics 176: 1759–1798 doi:10.1534/genetics.106.067678

22. LangGI, RiceDP, HickmanMJ, SodergrenE, WeinstockGM, et al. (2013) Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500: 571–4 doi:10.1038/nature12344

23. FélixM-A, WagnerA (2006) Robustness and evolution: concepts, insights and challenges from a developmental model system. Heredity 100: 132–140 doi:10.1038/sj.hdy.6800915

24. AnderssonSG, ZomorodipourA, AnderssonJO, Sicheritz-PonténT, AlsmarkUC, et al. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140 doi:10.1038/24094

25. ShigenobuS, WatanabeH, HattoriM, SakakiY, IshikawaH (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407: 81–86 doi:10.1038/35024074

26. MendonçaAG, AlvesRJ, Pereira-LealJB (2011) Loss of Genetic Redundancy in Reductive Genome Evolution. PLoS Comput Biol 7: e1001082 doi:10.1371/journal.pcbi.1001082.g006

27. KvitekDJ, SherlockG (2011) Reciprocal Sign Epistasis between Frequently Experimentally Evolved Adaptive Mutations Causes a Rugged Fitness Landscape. PLoS Genet 7: e1002056 doi:10.1371/journal.pgen.1002056

28. DesaiMM, FisherDS, MurrayAW (2007) The speed of evolution and maintenance of variation in asexual populations. CURBIO 17: 385–394 doi:10.1016/j.cub.2007.01.072

29. LangGI, BotsteinD, DesaiMM (2011) Genetic variation and the fate of beneficial mutations in asexual populations. Genetics 188: 647–661 doi:10.1534/genetics.111.128942

30. LafuenteMJ, GancedoC, JauniauxJC, GancedoJM (2000) Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae‡. Molecular … 35: 161–172.

31. GancedoJM (2008) The early steps of glucose signalling in yeast. FEMS Microbiology Reviews 32: 673–704 doi:10.1111/j.1574-6976.2008.00117.x

32. TamakiH (2007) Glucose-stimulated cAMP-protein kinase a pathway in yeast Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 104: 245–250 doi:10.1263/jbb.104.245

33. CameroniE, HuloN, RoosenJ, WinderickxJ, De VirgilioC (2004) The novel yeast PAS kinase Rim 15 orchestrates G0-associated antioxidant defense mechanisms. Cell Cycle 3: 462–468.

34. BrewsterJL, GustinMC (1994) Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway. Yeast 10: 425–439 doi:10.1002/yea.320100402

35. WengerJW, PiotrowskiJ, NagarajanS, ChiottiK, SherlockG, et al. (2011) Hunger Artists: Yeast Adapted to Carbon Limitation Show Trade-Offs under Carbon Sufficiency. PLoS Genet 7: e1002202 doi:10.1371/journal.pgen.1002202.t005

36. BarrettRDH, MacLeanRC, BellG (2006) Mutations of intermediate effect are responsible for adaptation in evolving Pseudomonas fluorescens populations. Biol Lett 2: 236–238 doi:10.1098/rsbl.2006.0439

37. ShawFH, GeyerCJ, ShawRG (2002) A COMPREHENSIVE MODEL OF MUTATIONS AFFECTING FITNESS AND INFERENCES FOR ARABIDOPSIS THALIANA - Shaw - 2007 - Evolution - Wiley Online Library. Evolution

38. JosephSB, HallDW (2004) Spontaneous mutations in diploid Saccharomyces cerevisiae: more beneficial than expected. Genetics 168: 1817–1825 doi:10.1534/genetics.104.033761

39. HallDW, MahmoudizadR, HurdAW (2008) Spontaneous mutations in diploid Saccharomyces cerevisiae: another thousand cell generations. Genet Res 90: 229–41.

40. HallDW, JosephSB (2010) A high frequency of beneficial mutations across multiple fitness components in Saccharomyces cerevisiae. Genetics 185: 1397–1409 doi:10.1534/genetics.110.118307

41. LangGI, MurrayAW (2008) Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178: 67–82 doi:10.1534/genetics.107.071506

42. HottesAK, FreddolinoPL, KhareA, DonnellZN, LiuJC, et al. (2013) Bacterial Adaptation through Loss of Function. PLoS Genet 9: e1003617 doi:10.1371/journal.pgen.1003617

43. GreavesM, MaleyCC (2012) Clonal evolution in cancer. Nature 481: 306–313 doi:10.1038/nature10762

44. SprouffskeK, MerloLMF, GerrishPJ, MaleyCC, SniegowskiPD (2012) Cancer in Light of Experimental Evolution. Current Biology 22: R762–R771 doi:10.1016/j.cub.2012.06.065

45. PodlahaO, RiesterM, DeS, MichorF (2012) Evolution of the cancer genome. Trends in Genetics 28: 155–163 doi:10.1016/j.tig.2012.01.003

46. YingH, KimmelmanAC, LyssiotisCA, HuaS, ChuGC, et al. (2012) Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism. Cell 149: 656–670 doi:10.1016/j.cell.2012.01.058

47. ShawRJ, CantleyLC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424–430 doi:10.1038/nature04869

48. JohnstonM, KimJ-H (2005) Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 33: 247–252 doi:10.1042/BST0330247

49. CooperVS, LenskiRE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407: 736–739 doi:10.1038/35037572

50. HoltRD (2000) Evolutionary biology. Use it or lose it. Nature 407: 689–690 doi:10.1038/35037703

51. QianW, MaD, XiaoC, WangZ, ZhangJ (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. CellReports 2: 1399–1410 doi:10.1016/j.celrep.2012.09.017

52. Notley-McRobbL, KingT, FerenciT (2002) rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol 184: 806–811.

53. FerenciT (2003) What is driving the acquisition of mutS and rpoS polymorphisms in Escherichia coli? Trends Microbiol 11: 457–461.

54. MartinM (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17: pp.10–pp.12.

55. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760 doi:10.1093/bioinformatics/btp324

56. McKennaA, HannaM, BanksE, SivachenkoA, CibulskisK, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20: 1297–1303 doi:10.1101/gr.107524.110

57. DepristoMA, BanksE, PoplinR, GarimellaKV, MaguireJR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491–498 doi:10.1038/ng.806

58. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079 doi:10.1093/bioinformatics/btp352

59. BenjaminiY, HochbergY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 57: 289–300.

60. KumarP, HenikoffS, NgPC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4: 1073–1081 doi:10.1038/nprot.2009.86

61. DeereD, ShenJ, VeseyG, BellP, BissingerP, et al. (1998) Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14: 147–160 doi:;10.1002/(SICI)1097-0061(19980130)14:2<147::AID-YEA207>3.0.CO;2-L

62. BoyleEI, WengS, GollubJ, JinH, BotsteinD, et al. (2004) GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20: 3710–3715 doi:10.1093/bioinformatics/bth456

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#