Lack of Replication of the -by-Coffee Interaction in Parkinson Disease
article has not abstract
Vyšlo v časopise:
Lack of Replication of the -by-Coffee Interaction in Parkinson Disease. PLoS Genet 10(11): e32767. doi:10.1371/journal.pgen.1004788
Kategorie:
Formal Comment
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004788
Souhrn
article has not abstract
Zdroje
1. ManolioTA, CollinsFS, CoxNJ, GoldsteinDB, HindorffLA, et al. (2009) Finding the missing heritability of complex diseases. Nature 461: 747–753.
2. LillCM, RoehrJT, McQueenMB, KavvouraFK, BagadeS, et al. (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: The PDGene database. PLoS Genet 8: e1002548.
3. NoyceAJ, BestwickJP, Silveira-MoriyamaL, HawkesCH, GiovannoniG, et al. (2012) Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 72: 893–901.
4. QiH, LiS (2013) Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson's disease. Geriatr Gerontol Int 1–10.
5. ShookBC, JacksonPF (2011) Adenosine A(2A) Receptor Antagonists and Parkinson's Disease. ACS Chem Neurosci 2: 555–567.
6. KraftP, YenY-C, StramDO, MorrisonJ, GaudermanWJ (2007) Exploiting gene-environment interaction to detect genetic associations. Hum Hered 63: 111–119.
7. HamzaTH, ChenH, Hill-BurnsEM, RhodesSL, MontimurroJ, et al. (2011) Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interaction with coffee. PLoS Genet 7: e1002237.
8. ThomasD (2010) Gene–environment-wide association studies: emerging approaches. Nat Rev Genet 11: 259–272.
9. ThomasDC, LewingerJP, MurcrayCE, GaudermanWJ (2012) Invited commentary: GE-Whiz! Ratcheting gene-environment studies up to the whole genome and the whole exposome. Am J Epidemiol 175: 203–207.
10. AminN, ByrneE, JohnsonJ, Chenevix-TrenchG, WalterS, et al. (2012) Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol Psychiatry 17: 1116–1129.
11. YangQ, KhouryMJ, FlandersWD (1997) Sample size requirements in case-only designs to detect gene-environment interaction. Am J Epidemiol 146: 713–720.
12. MukherjeeB, ChatterjeeN (2008) Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics 64: 685–694.
13. WermuthL, LassenCF, HimmerslevL, OlsenJ, RitzB (2012) Validation of hospital register-based diagnosis of Parkinson's disease. Dan Med J 59: A4391.
14. MorimotoLM, WhiteE, NewcombPA (2003) Selection bias in the assessment of gene-environment interaction in case-control studies. Am J Epidemiol 158: 259–263.
15. WitteJS, GaudermanWJ, ThomasDC (1999) Asymptotic bias and efficiency in case-control studies of candidate genes and gene-environment interactions: basic family designs. Am J Epidemiol 149: 693–705.
16. WangY, LocalioR, RebbeckTR (2006) Evaluating bias due to population stratification in epidemiologic studies of gene-gene or gene-environment interactions. Cancer Epidemiol Biomarkers Prev 15: 124–32.
17. FayardC, BonaventureA, BenatruI, RozeE, DumurgierJ, et al. (2011) Impact of recommendations on the initial therapy of Parkinson's disease: a population-based study in France. Parkinsonism Relat Disord 17: 543–546.
18. BowerJH, MaraganoreDM, McDonnellSK, RoccaWA (1999) Incidence and distribution of parkinsonism in Olmsted County, Minnesota, 1976–1990. Neurology 52: 1214–1220.
19. CheckowayH, PowersK, Smith-WellerT, FranklinGM, LongstrethWT, et al. (2002) Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155: 732–738.
20. Searles NielsenS, CheckowayH, ButlerRA, NelsonHH, FarinFM, et al. (2012) LINE-1 DNA methylation, smoking and risk of Parkinson's disease. J Parkinsons Dis 2: 303–308.
21. MaraganoreDM, de AndradeM, LesnickTG, StrainKJ, FarrerMJ, et al. (2005) High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 77: 685–693.
22. FacherisMF, SchneiderNK, LesnickTG, de AndradeM, CunninghamJM, et al. (2008) Coffee, caffeine-related genes, and Parkinson's disease: a case-control study. Mov Disord 23: 2033–2040.
23. Searles NielsenS, FranklinGM, LongstrethWT, SwansonPD, CheckowayH (2013) Nicotine from edible Solanaceae and risk of Parkinson disease. Ann Neurol 74: 472–477.
24. GaudermanWJ (2002) Sample size requirements for association studies of gene-gene interaction. Am J Epidemiol 155: 478–484.
25. HubermanM, LangholzB (1999) Re: “Combined analysis of matched and unmatched case-control studies: comparison of risk estimates from different studies”. Am J Epidemiol 150: 219–220.
26. MorenoV, MartínML, BoschFX, de SanjoséS, TorresF, et al. (1996) Combined analysis of matched and unmatched case-control studies: comparison of risk estimates from different studies. Am J Epidemiol 143: 293–300.
27. BottoLD, KhouryMJ (2001) Commentary: facing the challenge of gene-environment interaction: the two-by-four table and beyond. Am J Epidemiol 153: 1016–1020.
28. Tchetgen TchetgenEJ, KraftP (2011) On the robustness of tests of genetic associations incorporating gene-environment interaction when the environmental exposure is misspecified. Epidemiology 22: 257–261.
29. WeinbergCR (1986) Applicability of the simple independent action model to epidemiologic studies involving two factors and a dichotomous outcome. Am J Epidemiol 123: 162–173.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 11
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- An RNA-Seq Screen of the Antenna Identifies a Transporter Necessary for Ammonia Detection
- Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation
- Functional Diversity of Carbohydrate-Active Enzymes Enabling a Bacterium to Ferment Plant Biomass
- Regularized Machine Learning in the Genetic Prediction of Complex Traits