The Role of Regulatory Evolution in Maize Domestication
Modification of cis regulatory elements to produce differences in gene expression level, localization, and timing is an important mechanism by which organisms evolve divergent adaptations. To examine gene regulatory change during the domestication of maize from its wild progenitor, teosinte, we assessed allele-specific expression in a collection of maize and teosinte inbreds and their F1 hybrids using three tissues from different developmental stages. Our use of F1 hybrids represents the first study in a domesticated crop and wild progenitor that dissects cis and trans regulatory effects to examine characteristics of genes under various cis and trans regulatory regimes. We find evidence for consistent cis regulatory divergence that differentiates maize from teosinte in approximately 4% of genes. These genes are significantly correlated with genes under selection during domestication and crop improvement, suggesting an important role for cis regulatory elements in maize evolution. This work provides valuable insight into the evolution of gene regulatory elements during the domestication of an important crop plant.
Vyšlo v časopise:
The Role of Regulatory Evolution in Maize Domestication. PLoS Genet 10(11): e32767. doi:10.1371/journal.pgen.1004745
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004745
Souhrn
Modification of cis regulatory elements to produce differences in gene expression level, localization, and timing is an important mechanism by which organisms evolve divergent adaptations. To examine gene regulatory change during the domestication of maize from its wild progenitor, teosinte, we assessed allele-specific expression in a collection of maize and teosinte inbreds and their F1 hybrids using three tissues from different developmental stages. Our use of F1 hybrids represents the first study in a domesticated crop and wild progenitor that dissects cis and trans regulatory effects to examine characteristics of genes under various cis and trans regulatory regimes. We find evidence for consistent cis regulatory divergence that differentiates maize from teosinte in approximately 4% of genes. These genes are significantly correlated with genes under selection during domestication and crop improvement, suggesting an important role for cis regulatory elements in maize evolution. This work provides valuable insight into the evolution of gene regulatory elements during the domestication of an important crop plant.
Zdroje
1. CarrollSB (2005) Evolution at two levels: on genes and form. PLoS Biol 3: e245 doi:10.1371/journal.pbio.0030245
2. CarrollSB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134: 25–36 doi:10.1016/j.cell.2008.06.030
3. WittkoppPJ, KalayG (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13: 59–69 doi:10.1038/nrg3095
4. SternDL, OrgogozoV (2008) The loci of evolution: how predictable is genetic evolution? Evolution (N Y) 62: 2155–2177 doi:10.1111/j.1558-5646.2008.00450.x
5. SpringerNM, StuparRM (2007) Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. Plant Cell 19: 2391–2402 doi:10.1105/tpc.107.052258
6. ZhangX, BorevitzJO (2009) Global analysis of allele-specific expression in Arabidopsis thaliana. Genetics 182: 943–954 doi:10.1534/genetics.109.103499
7. BellGDM, KaneNC, RiesebergLH, AdamsKL (2013) RNA-seq analysis of allele-specific expression, hybrid effects, and regulatory divergence in hybrids compared with their parents from natural populations. Genome Biol Evol 5: 1309–1323 doi:10.1093/gbe/evt072
8. SongG, GuoZ, LiuZ, ChengQ, QuX, et al. (2013) Global RNA sequencing reveals that genotype-dependent allele-specific expression contributes to differential expression in rice F1 hybrids. BMC Plant Biol 13: 221 doi:10.1186/1471-2229-13-221
9. TiroshI, ReikhavS, Levy Aa, BarkaiN (2009) A yeast hybrid provides insight into the evolution of gene expression regulation. Science (80-) 324: 659–662 doi:10.1126/science.1169766
10. EmersonJJ, HsiehL-C, SungH-M, WangT-Y, HuangC-J, et al. (2010) Natural selection on cis and trans regulation in yeasts. Genome Res 20: 826–836 doi:10.1101/gr.101576.109
11. McManusCJ, CoolonJD, DuffMO, Eipper-MainsJ, GraveleyBR, et al. (2010) Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res 20: 816–825 doi:10.1101/gr.102491.109
12. HeF, ZhangX, HuJ, TurckF, DongX, et al. (2012) Genome-wide Analysis of Cis-regulatory Divergence between Species in the Arabidopsis Genus. Mol Biol Evol 29: 3385–3395 doi:10.1093/molbev/mss146
13. SchaefkeB, EmersonJJ, WangT-Y, LuM-YJ, HsiehL-C, et al. (2013) Inheritance of gene expression level and selective constraints on trans- and cis-regulatory changes in yeast. Mol Biol Evol 30: 2121–2133 doi:10.1093/molbev/mst114
14. DoebleyJF, GautBS, SmithBD (2006) The molecular genetics of crop domestication. Cell 127: 1309–1321 doi:10.1016/j.cell.2006.12.006
15. PuruggananMD, FullerDQ (2009) The nature of selection during plant domestication. Nature 457: 843–848 doi:10.1038/nature07895
16. OlsenKM, WendelJF (2013) A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64: 47–70 doi:10.1146/annurev-arplant-050312-120048
17. StuderA, ZhaoQ, Ross-IbarraJ, DoebleyJ (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43: 1160–1163 doi:10.1038/ng.942
18. YangQ, LiZ, LiW, KuL, WangC, et al. (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci 110: 16969–16974 doi:10.1073/pnas.1310949110
19. LangZ, WillsDM, LemmonZH, ShannonLM, BukowskiR, et al. (2014) Defining the Role of prolamin-box binding factor1 Gene During Maize Domestication. J Hered doi:10.1093/jhered/esu019
20. KonishiS, IzawaT, LinSY, EbanaK, FukutaY, et al. (2006) An SNP caused loss of seed shattering during rice domestication. Science (80-) 312: 1392–1396 doi:10.1126/science.1126410
21. WillsDM, WhippleCJ, TakunoS, KurselLE, ShannonLM, et al. (2013) From many, one: genetic control of prolificacy during maize domestication. PLoS Genet 9: e1003604 doi:10.1371/journal.pgen.1003604
22. FraryA, NesbittTC, GrandilloS, KnaapE, CongB, et al. (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85–88 doi:10.1126/science.289.5476.85
23. RappRA, HaiglerCH, FlagelL, HovavRH, UdallJA, et al. (2010) Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol 8: 139 doi:10.1186/1741-7007-8-139
24. Swanson-WagnerR, BriskineR, SchaeferR, HuffordMB, Ross-IbarraJ, et al. (2012) Reshaping of the maize transcriptome by domestication. Proc Natl Acad Sci 109: 11878–11883 doi:10.1073/pnas.1201961109
25. KoenigD, Jiménez-GómezJM, KimuraS, FulopD, ChitwoodDH, et al. (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci 110: E2655–62 doi:10.1073/pnas.1309606110
26. HuffordMB, XuX, van HeerwaardenJ, PyhäjärviT, ChiaJ-M, et al. (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44: 808–811 doi:10.1038/ng.2309
27. EichtenSR, BriskineR, SongJ, LiQ, Swanson-WagnerR, et al. (2013) Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell 25: 2783–2797 doi:10.1105/tpc.113.114793
28. DuncanIW (2002) Transvection effects in Drosophila. Annu Rev Genet 36: 521–556 doi:10.1146/annurev.genet.36.060402.100441
29. LesterRN (1989) Evolution under domestication involving disturbance of genic balance. Euphytica 44: 125–132 doi:10.1007/BF00022606
30. JinJ, ZhangH, KongL, GaoG, LuoJ (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42: D1182–7 doi:10.1093/nar/gkt1016
31. Shannon LM (2012) The Genetic Architecture of Maize Domestication and Range Expansion. Ph.D. dissertation. University of Wisconsin - Madison.
32. HanseyCN, VaillancourtB, SekhonRS, de LeonN, KaepplerSM, et al. (2012) Maize (Zea mays L.) genome diversity as revealed by RNA-sequencing. PLoS One 7: e33071 doi:10.1371/journal.pone.0033071
33. TenaillonMI, U'RenJ, TenaillonO, GautBS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21: 1214–1225 doi:10.1093/molbev/msh102
34. Eyre-WalkerA, KeightleyPD (2009) Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol Biol Evol 26: 2097–2108 doi:10.1093/molbev/msp119
35. StrasburgJL, ShermanNA, WrightKM, MoyleLC, WillisJH, et al. (2012) What can patterns of differentiation across plant genomes tell us about adaptation and speciation? Philos Trans R Soc Lond B Biol Sci 367: 364–373 doi:10.1098/rstb.2011.0199
36. WangH, Nussbaum-WaglerT, LiB, ZhaoQ, VigourouxY, et al. (2005) The origin of the naked grains of maize. Nature 436: 714–719 doi:10.1038/nature03863
37. LinZ, LiX, ShannonLM, YehC-T, WangML, et al. (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44: 720–724 doi:10.1038/ng.2281
38. LuJ, TangT, TangH, HuangJ, ShiS, et al. (2006) The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet 22: 126–131 doi:10.1016/j.tig.2006.01.004
39. BurgerJC, ChapmanMA, BurkeJM (2008) Molecular insights into the evolution of crop plants. Am J Bot 95: 113–122 doi:10.3732/ajb.95.2.113
40. GrossBL, OlsenKM (2010) Genetic perspectives on crop domestication. Trends Plant Sci 15: 529–537 doi:10.1016/j.tplants.2010.05.008
41. GallavottiA, ZhaoQ, KyozukaJ, MeeleyRB, RitterMK, et al. (2004) The role of barren stalk1 in the architecture of maize. Nature 432: 630–635 doi:10.1038/nature03148
42. ZhongS, JoungJ, ZhengY, ChenY, LiuB, et al. (2011) High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb Protoc 2011: 940–949 doi:10.1101/pdb.prot5652
43. SatyaRV, ZavaljevskiN, ReifmanJ (2012) A new strategy to reduce allelic bias in RNA-Seq readmapping. Nucleic Acids Res 40: e127 doi:10.1093/nar/gks425
44. HuangS, HoltJ, KaoC-Y, McMillanL, WangW (2014) A novel multi-alignment pipeline for high-throughput sequencing data. Database (Oxford) 2014: 1–12 doi:10.1093/database/bau057
45. GrabherrMG, HaasBJ, YassourM, LevinJZ, ThompsonDA, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29: 644–652 doi:10.1038/nbt.1883
46. WangX, SolowayPD, ClarkAG (2011) A survey for novel imprinted genes in the mouse placenta by mRNA-seq. Genetics 189: 109–122 doi:10.1534/genetics.111.130088
47. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760 doi:10.1093/bioinformatics/btp324
48. McKennaA, HannaM, BanksE, SivachenkoA, CibulskisK, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303 doi:10.1101/gr.107524.110
49. DePristoMA, BanksE, PoplinR, GarimellaKV, MaguireJR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491–498 doi:10.1038/ng.806
50. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25 doi:10.1186/gb-2009-10-3-r25
51. StoreyJD (2002) A direct approach to false discovery rates. J R Stat Soc Ser B (Statistical Methodol 64: 479–498 doi:10.1111/1467-9868.00346
52. DeanRB, DixonWJ (1951) Simplified Statistics for Small Numbers of Observations. Anal Chem 23: 636–638 doi:10.1021/ac60052a025
53. KanehisaM (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28: 27–30 doi:10.1093/nar/28.1.27
54. KanehisaM, GotoS, SatoY, FurumichiM, TanabeM (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: D109–14 doi:10.1093/nar/gkr988
55. YoungMD, WakefieldMJ, SmythGK, OshlackA (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11: R14 doi:10.1186/gb-2010-11-2-r14
56. R Development Core Team (2013) R: A language and environment for statistical computing.
57. BenjaminiY, HochbergY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57: 289–300.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 11
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- An RNA-Seq Screen of the Antenna Identifies a Transporter Necessary for Ammonia Detection
- Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation
- Functional Diversity of Carbohydrate-Active Enzymes Enabling a Bacterium to Ferment Plant Biomass
- Regularized Machine Learning in the Genetic Prediction of Complex Traits