Chk2 and P53 Regulate the Transmission of Healed Chromosomes in the Male Germline
When a dicentric chromosome breaks in mitosis, the broken ends cannot be repaired by normal mechanisms that join two broken ends since each end is in a separate daughter cell. However, in the male germline of Drosophila melanogaster, a broken end may be healed by de novo telomere addition. We find that Chk2 (encoded by lok) and P53, major mediators of the DNA damage response, have strong and opposite influences on the transmission of broken-and-healed chromosomes: lok mutants exhibit a large increase in the recovery of healed chromosomes relative to wildtype control males, but p53 mutants show a strong reduction. This contrasts with the soma, where mutations in lok and p53 have the nearly identical effect of allowing survival and proliferation of cells with irreparable DNA damage. Examination of testes revealed a transient depletion of germline cells after dicentric chromosome induction in the wildtype controls, and further showed that P53 is required for the germline to recover. Although lok mutant males transmit healed chromosomes at a high rate, broken chromosome ends can also persist through spermatogonial divisions without healing in lok mutants, giving rise to frequent dicentric bridges in Meiosis II. Cytological and genetic analyses show that spermatid nuclei derived from such meiotic divisions are eliminated during spermiogenesis, resulting in strong meiotic drive. We conclude that the primary responsibility for maintaining genome integrity in the male germline lies with Chk2, and that P53 is required to reconstitute the germline when cells are eliminated owing to unrepaired DNA damage.
Vyšlo v časopise:
Chk2 and P53 Regulate the Transmission of Healed Chromosomes in the Male Germline. PLoS Genet 10(2): e32767. doi:10.1371/journal.pgen.1004130
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004130
Souhrn
When a dicentric chromosome breaks in mitosis, the broken ends cannot be repaired by normal mechanisms that join two broken ends since each end is in a separate daughter cell. However, in the male germline of Drosophila melanogaster, a broken end may be healed by de novo telomere addition. We find that Chk2 (encoded by lok) and P53, major mediators of the DNA damage response, have strong and opposite influences on the transmission of broken-and-healed chromosomes: lok mutants exhibit a large increase in the recovery of healed chromosomes relative to wildtype control males, but p53 mutants show a strong reduction. This contrasts with the soma, where mutations in lok and p53 have the nearly identical effect of allowing survival and proliferation of cells with irreparable DNA damage. Examination of testes revealed a transient depletion of germline cells after dicentric chromosome induction in the wildtype controls, and further showed that P53 is required for the germline to recover. Although lok mutant males transmit healed chromosomes at a high rate, broken chromosome ends can also persist through spermatogonial divisions without healing in lok mutants, giving rise to frequent dicentric bridges in Meiosis II. Cytological and genetic analyses show that spermatid nuclei derived from such meiotic divisions are eliminated during spermiogenesis, resulting in strong meiotic drive. We conclude that the primary responsibility for maintaining genome integrity in the male germline lies with Chk2, and that P53 is required to reconstitute the germline when cells are eliminated owing to unrepaired DNA damage.
Zdroje
1. McClintockB (1941) The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 26: 234–282.
2. McClintockB (1939) The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc Natl Acad Sci USA 25: 405–416.
3. MullerHJ (1938) The remaking of chromosomes. Collecting Net 8: 182–198.
4. RobertsPA (1975) In support of the telomere concept. Genetics 80: 135–142.
5. MasonJM, StrobelE, GreenMM (1984) mu-2: mutator gene in Drosophila that potentiates the induction of terminal deficiencies. Proc Natl Acad Sci USA 81: 6090–6094.
6. AhmadK, GolicKG (1998) The transmission of fragmented chromosomes in Drosophila melanogaster. Genetics 148: 775–792.
7. LevisRW (1989) Viable deletions of a telomere from a Drosophila chromosome. Cell 58: 791–801.
8. SprungCN, ReynoldsGE, JasinM, MurnaneJP (1999) Chromosome healing in mouse embryonic stem cells. Proc Natl Acad Sci USA 96: 6781–6786.
9. FlintJ, CraddockCF, VillegasA, BentleyDP, WilliamsHJ, et al. (1994) Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet 55: 505–512.
10. WongAC, NingY, FlintJ, ClarkK, DumanskiJP, et al. (1997) Molecular characterization of a 130-kb terminal microdeletion at 22q in a child with mild mental retardation. Am J Hum Genet 60: 113–120.
11. GolicKG (1994) Local transposition of P elements in Drosophila melanogaster and recombination between duplicated elements using a site-specific recombinase. Genetics 137: 551–563.
12. TitenSWA, GolicKG (2008) Telomere loss provokes multiple pathways to apoptosis and produces genomic instability in Drosophila melanogaster. Genetics 180: 1821–1832 doi:10.1534/genetics.108.093625
13. TitenSWA, GolicKG (2010) Healing of euchromatic chromosome breaks by efficient de novo telomere addition in Drosophila melanogaster. Genetics 184: 309–312 doi:10.1534/genetics.109.109934
14. Lindsley DL (1980) Spermatogenesis. In: Ashburner M, Wright TRF, editors. The Genetics and Biology of Drosophila. London: Academic Press, Vol. 2D. pp. 226–294.
15. Fuller MT (1993) Spermatogenesis. In: Bate M, Martinez-Arias A, editors. The Development of Drosophila melanogaster. Plainview, NY: Cold Spring Harbor Laboratory Press, Vol. 1. pp. 71–147.
16. KurzhalsRL, TitenSWA, XieHB, GolicKG (2011) Chk2 and p53 Are Haploinsufficient with Dependent and Independent Functions to Eliminate Cells after Telomere Loss. PLoS Genet 7: e1002103 doi:10.1371/journal.pgen.1002103
17. XuJ, DuW (2003) Drosophila chk2 plays an important role in a mitotic checkpoint in syncytial embryos. FEBS Lett 545: 209–212 doi:10.1016/S0014-5793(03)00536-2
18. BrodskyMH, WeinertBT, TsangG, RongYS, McGinnisNM, et al. (2004) Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24: 1219–1231.
19. AkdemirF, ChristichA, SogameN, ChapoJ, AbramsJM (2007) p53 directs focused genomic responses in Drosophila. Oncogene 26: 5184–5193 doi:10.1038/sj.onc.1210328
20. BrodskyMH, NordstromW, TsangG, KwanE, RubinGM, et al. (2000) Drosophila p53 Binds a Damage Response Element at the reaper Locus. Cell 101: 103–113 doi:10.1016/S0092-8674(00)80627-3
21. OllmannM, YoungLM, Di ComoCJ, KarimF, BelvinM, et al. (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101: 91–101 doi:10.1016/S0092-8674(00)80626-1
22. SogameN, KimM, AbramsJM (2003) Drosophila p53 preserves genomic stability by regulating cell death. Proc Natl Acad Sci USA 100: 4696–4701 doi:10.1073/pnas.0736384100
23. PetersM, DeLucaC, HiraoA, StambolicV, PotterJ, et al. (2002) Chk2 regulates irradiation-induced, p53-mediated apoptosis in Drosophila. Proc Natl Acad Sci USA 99: 11305–11310 doi:10.1073/pnas.172382899
24. JinS, MartinekS, JooWS, WortmanJR, MirkovicN, et al. (2000) Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci USA 97: 7301–7306.
25. DronamrajuR, MasonJM (2009) Recognition of double strand breaks by a mutator protein (MU2) in Drosophila melanogaster. PLoS Genet 5: e1000473 doi:10.1371/journal.pgen.1000473
26. LaneDP (1992) Cancer. p53, guardian of the genome. Nature 358: 15–16 doi:10.1038/358015a0
27. XuJ, XinS, DuW (2001) Drosophila Chk2 is required for DNA damage-mediated cell cycle arrest and apoptosis. FEBS Lett 508: 394–398.
28. VarmarkH, KwakS, TheurkaufWE (2010) A role for Chk2 in DNA damage induced mitotic delays in human colorectal cancer cells. Cell Cycle 9: 312–320.
29. MatsuokaS, HuangM, ElledgeSJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science (New York, NY) 282: 1893–1897.
30. HiraoA, KongYY, MatsuokaS, WakehamA, RulandJ, et al. (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science (New York, NY) 287: 1824–1827.
31. GireV, RouxP, Wynford-ThomasD, BrondelloJ-M, DulicV (2004) DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J 23: 2554–2563 doi:10.1038/sj.emboj.7600259
32. WeinertTA, KiserGL, HartwellLH (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8: 652–665.
33. AllenJB, ZhouZ, SiedeW, FriedbergEC, ElledgeSJ (1994) The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8: 2401–2415.
34. BeaucherM, ZhengXF, AmarieiF, RongYS (2012) Multiple Pathways Suppress Telomere Addition to DNA Breaks in the Drosophila Germline. Genetics 191: 407–417 doi:10.1534/genetics.112.138818
35. MenendezD, IngaA, ResnickMA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9: 724–737 doi:10.1038/nrc2730
36. MiharaM, ErsterS, ZaikaA, PetrenkoO, ChittendenT, et al. (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.
37. ChipukJE, KuwanaT, Bouchier-HayesL, DroinNM, NewmeyerDD, et al. (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science (New York, NY) 303: 1010–1014 doi:10.1126/science.1092734
38. MarchenkoND, ZaikaA, MollUM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275: 16202–16212.
39. Vélez-CruzR, JohnsonDG (2012) E2F1 and p53 Transcription Factors as Accessory Factors for Nucleotide Excision Repair. Int J Mol Sci 13: 13554–13568 doi:10.3390/ijms131013554
40. StanselRM, SubramanianD, GriffithJD (2002) p53 binds telomeric single strand overhangs and t-loop junctions in vitro. J Biol Chem 277: 11625–11628 doi:10.1074/jbc.C100764200
41. Rashid AlST, DellaireG, CuddihyA, JalaliF, VaidM, et al. (2005) Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo. Cancer Res 65: 10810–10821 doi:10.1158/0008-5472.CAN-05-0729
42. WellsBS, YoshidaE, JohnstonLA (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16: 1606–1615 doi:10.1016/j.cub.2006.07.046
43. WellsBS, JohnstonLA (2012) Maintenance of imaginal disc plasticity and regenerative potential in Drosophila by p53. Developmental Biology 361: 263–276.
44. YamadaY, DavisKD, CoffmanCR (2008) Programmed cell death of primordial germ cells in Drosophila is regulated by p53 and the Outsiders monocarboxylate transporter. Development 135: 207–216.
45. Petre-LazarB, LiveraG, MorenoSG, TrautmannE, DuquenneC, et al. (2007) The role of p63 in germ cell apoptosis in the developing testis. J Cell Physiol 210: 87–98 doi:10.1002/jcp.20829
46. DerryWB, BieringsR, van IerselM, SatkunendranT, ReinkeV, et al. (2006) Regulation of developmental rate and germ cell proliferation in Caenorhabditis elegans by the p53 gene network. Cell Death Differ 14: 662–670 doi:10.1038/sj.cdd.4402075
47. BeumerTL, Roepers-GajadienHL, GademanIS, van BuulPP, Gil-GomezG, et al. (1998) The role of the tumor suppressor p53 in spermatogenesis. Cell Death Differ 5: 669–677 doi:10.1038/sj.cdd.4400396
48. BeyerU, Moll-RocekJ, MollUM, DobbelsteinM (2011) Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes. Proc Natl Acad Sci USA 108: 3624–3629 doi:10.1073/pnas.1016201108
49. SchwartzD, GoldfingerN, KamZ, RotterV (1999) p53 controls low DNA damage-dependent premeiotic checkpoint and facilitates DNA repair during spermatogenesis. Cell Growth Differ 10: 665–675.
50. MonkAC, AbudHE, HimeGR (2012) Dmp53 is sequestered to nuclear bodies in spermatogonia of Drosophila melanogaster. Cell Tissue Res 350: 385–394 doi:10.1007/s00441-012-1479-4
51. Sandler L, Carpenter ATC (1972) A note on the chromosomal site of action of SD in Drosophila melanogaster. In: Beatty RA, Gluecksohn-Waelsch S, editors. Proc. Int. Symp. The Genetics of the Spermatozoon. Copenhagen: Bogtrykkereit Forum. pp. 233–246.
52. NicolettiB, TrippaG, DemarcoA (1967) Reduced fertility in SD males and its bearing on segregation distortion in Drosophila melanogaster. Atti Acad Naz Lincei 43: 383–392.
53. HartlDL (1969) Dysfunctional sperm production in Drosophila melanogaster males homozygous for the segregation distorter elements. Proc Natl Acad Sci USA 63: 782–789.
54. HartlDL, HiraizumiY, CrowJF (1967) Evidence for sperm dysfunction as the mechanism of segregation distortion in Drosophila melanogaster. Proc Natl Acad Sci USA 58: 2240–2245.
55. MerrillC, BayraktarogluL, KusanoA, GanetzkyB (1999) Truncated RanGAP encoded by the Segregation Distorter locus of Drosophila. Science (New York, NY) 283: 1742–1745.
56. WuCI, LyttleTW, WuML, LinGF (1988) Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster. Cell 54: 179–189.
57. KusanoA, StaberC, GanetzkyB (2001) Nuclear mislocalization of enzymatically active RanGAP causes segregation distortion in Drosophila. Dev Cell 1: 351–361.
58. KusanoA, StaberC, GanetzkyB (2002) Segregation distortion induced by wild-type RanGAP in Drosophila. Proc Natl Acad Sci USA 99: 6866–6870 doi:10.1073/pnas.102165099
59. LarracuenteAM, PresgravesDC (2012) The selfish Segregation Distorter gene complex of Drosophila melanogaster. Genetics 192: 33–53 doi:10.1534/genetics.112.141390
60. SandlerL, HiraizumiY, SandlerI (1959) Meiotic Drive in Natural Populations of Drosophila Melanogaster. I. the Cytogenetic Basis of Segregation-Distortion. Genetics 44: 233–250.
61. CrowJF, ThomasC, SandlerL (1962) Evidence that the segregation-distortion phenomenon in Drosophila involves chromosome breakage. Proc Natl Acad Sci USA 48: 1307–1314.
62. PeacockWJ, EricksonJ (1965) Segregation Distortion and regularly nonfunctional products of spermatogenesis in Drosophila melanogaster. Genetics 51: 313–328.
63. GolicMM, RongYS, PetersenRB, LindquistSL, GolicKG (1997) FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res 25: 3665–3671.
64. GolicKG, LindquistS (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59: 499–509.
65. GolicMM, GolicKG (1996) A quantitative measure of the mitotic pairing of alleles in Drosophila melanogaster and the influence of structural heterozygosity. Genetics 143: 385–400.
66. BonnerJJ, ParksC, Parker-ThornburgJ, MortinMA, PelhamHR (1984) The use of promoter fusions in Drosophila genetics: isolation of mutations affecting the heat shock response. Cell 37: 979–991.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 2
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Association Study of Metabolic Traits Reveals Novel Gene-Metabolite-Disease Links
- A Cohesin-Independent Role for NIPBL at Promoters Provides Insights in CdLS
- Classic Selective Sweeps Revealed by Massive Sequencing in Cattle
- Arf4 Is Required for Mammalian Development but Dispensable for Ciliary Assembly