The Same but Different: Worms Reveal the Pervasiveness of Developmental System Drift
article has not abstract
Vyšlo v časopise:
The Same but Different: Worms Reveal the Pervasiveness of Developmental System Drift. PLoS Genet 10(2): e32767. doi:10.1371/journal.pgen.1004150
Kategorie:
Perspective
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004150
Souhrn
article has not abstract
Zdroje
1. HartwellLH, CulottiJ, PringleJR, ReidBJ (1974) Genetic control of the cell division cycle in yeast. Science 183: 46–51.
2. BrennerS (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
3. Nusslein-VolhardC, WieschausE (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287: 795–801.
4. BowmanJL, SmythDR, MeyerowitzEM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1: 37–52.
5. HomannOR, DeaJ, NobleSM, JohnsonAD (2009) A phenotypic profile of the Candida albicans regulatory network. PLOS Genet 5: e1000783 doi:10.1371/journal.pgen.1000783
6. MartchenkoM, LevitinA, HoguesH, NantelA, WhitewayM (2007) Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol 17: 1007–1013.
7. HefferA, XiangJ, PickL (2013) Variation and constraint in Hox gene evolution. Proc Natl Acad Sci U S A 110: 2211–2216.
8. Ewen-CampenB, SroujiJR, SchwagerEE, ExtavourCG (2012) Oskar predates the evolution of germ plasm in insects. Curr Biol 22: 2278–2283.
9. TrueJR, HaagES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3: 109–119.
10. VersterA, RamaniA, McKayS, FraserA (2014) Comparative RNAi screens in C. elegans and C. briggsae reveal the impact of Developmental System Drift on gene function. PLOS Genet 10: e1004077 doi:10.1371/journal.pgen.1004077
11. FelixMA (2007) Cryptic quantitative evolution of the vulva intercellular signaling network in Caenorhabditis. Curr Biol 17: 103–114.
12. ZhaoZ, BoyleTJ, BaoZ, MurrayJI, MericleB, et al. (2008) Comparative analysis of embryonic cell lineage between Caenorhabditis briggsae and Caenorhabditis elegans. Dev Biol 314: 93–99.
13. HaagES, KimbleJ (2000) Regulatory elements required for development of Caenorhabditis elegans hermaphrodites are conserved in the tra-2 homologue of C. remanei, a male/female sister species. Genetics 155: 105–116.
14. KuwabaraPE (1996) Interspecies comparison reveals evolution of control regions in the nematode sex-determining gene tra-2. Genetics 144: 597–607.
15. WinstonWM, SutherlinM, WrightAJ, FeinbergEH, HunterCP (2007) Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci U S A 104: 10565–10570.
16. NuezI, FelixMA (2012) Evolution of susceptibility to ingested double-stranded RNAs in Caenorhabditis nematodes. PLOS One 7: e29811 doi:10.1371/journal.pone.0029811
17. GuoY, LangS, EllisR (2009) Independent recruitment of F-box genes to regulate hermaphrodite development during nematode evolution. Curr Biol 19: 1853–1860.
18. KelleherDF, de CarvalhoCE, DotyAV, LaytonM, ChengAT, et al. (2008) Comparative genetics of sex determination: masculinizing mutations in Caenorhabditis briggsae. Genetics 178: 1415–1429.
19. SharanyaD, ThillainathanB, MarriS, BojanalaN, TaylorJ, et al. (2012) Genetic control of vulval development in Caenorhabditis briggsae. G3 (Bethesda) 2: 1625–1641.
20. BeadellAV, LiuQ, JohnsonDM, HaagES (2011) Independent recruitments of a translational regulator in the evolution of self-fertile nematodes. Proc Natl Acad Sci U S A 108: 19672–19677.
21. HillRC, de CarvalhoCE, SalogiannisJ, SchlagerB, PilgrimD, et al. (2006) Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis nematodes. Dev Cell 10: 531–538.
22. NayakS, GoreeJ, SchedlT (2005) fog-2 and the evolution of self-fertile hermaphroditism in Caenorhabditis. PLOS Biology 3: e6 doi:10.1371/journal.pbio.0030006
23. LinKT, Broitman-MaduroG, HungWW, CervantesS, MaduroMF (2009) Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans. Dev Biol 325: 296–306.
24. RudelD, KimbleJ (2001) Conservation of glp-1 regulation and function in nematodes. Genetics 157: 639–654.
25. WangX, ChamberlinHM (2004) Evolutionary innovation of the excretory system in Caenorhabditis elegans. Nat Genet 36: 231–232.
26. KiontkeK, FélixM-A, AilionM, RockmanM, BraendleC, et al. (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 11: 339.
27. KiontkeK, GavinNP, RaynesY, RoehrigC, PianoF, et al. (2004) Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc Natl Acad Sci U S A 101: 9003–9008.
28. SommerRJ, EizingerA, LeeKZ, JungblutB, BubeckA, et al. (1998) The Pristionchus HOX gene Ppa-lin-39 inhibits programmed cell death to specify the vulva equivalence group and is not required during vulval induction. Development 125: 3865–3873.
29. HaagE (2007) Compensatory vs. pseudocompensatory evolution in molecular and developmental interactions. Genetica 129: 45–55.
30. JohnsonN, PorterA (2007) Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift. Genetica 129: 57–70.
31. SungYH, KimJM, KimHT, LeeJ, JeonJ, et al. (2013) Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res 24: 125–131.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 2
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Association Study of Metabolic Traits Reveals Novel Gene-Metabolite-Disease Links
- A Cohesin-Independent Role for NIPBL at Promoters Provides Insights in CdLS
- Classic Selective Sweeps Revealed by Massive Sequencing in Cattle
- Arf4 Is Required for Mammalian Development but Dispensable for Ciliary Assembly