Coherent Functional Modules Improve Transcription Factor Target Identification, Cooperativity Prediction, and Disease Association
Transcription factors (TFs) are fundamental controllers of cellular regulation that function in a complex and combinatorial manner. Accurate identification of a transcription factor's targets is essential to understanding the role that factors play in disease biology. However, due to a high false positive rate, identifying coherent functional target sets is difficult. We have created an improved mapping of targets by integrating ChIP-Seq data with 423 functional modules derived from 9,395 human expression experiments. We identified 5,002 TF-module relationships, significantly improved TF target prediction, and found 30 high-confidence TF-TF associations, of which 14 are known. Importantly, we also connected TFs to diseases through these functional modules and identified 3,859 significant TF-disease relationships. As an example, we found a link between MEF2A and Crohn's disease, which we validated in an independent expression dataset. These results show the power of combining expression data and ChIP-Seq data to remove noise and better extract the associations between TFs, functional modules, and disease.
Vyšlo v časopise:
Coherent Functional Modules Improve Transcription Factor Target Identification, Cooperativity Prediction, and Disease Association. PLoS Genet 10(2): e32767. doi:10.1371/journal.pgen.1004122
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004122
Souhrn
Transcription factors (TFs) are fundamental controllers of cellular regulation that function in a complex and combinatorial manner. Accurate identification of a transcription factor's targets is essential to understanding the role that factors play in disease biology. However, due to a high false positive rate, identifying coherent functional target sets is difficult. We have created an improved mapping of targets by integrating ChIP-Seq data with 423 functional modules derived from 9,395 human expression experiments. We identified 5,002 TF-module relationships, significantly improved TF target prediction, and found 30 high-confidence TF-TF associations, of which 14 are known. Importantly, we also connected TFs to diseases through these functional modules and identified 3,859 significant TF-disease relationships. As an example, we found a link between MEF2A and Crohn's disease, which we validated in an independent expression dataset. These results show the power of combining expression data and ChIP-Seq data to remove noise and better extract the associations between TFs, functional modules, and disease.
Zdroje
1. ZinzenRP, GirardotC, GagneurJ, BraunM, FurlongEEM (2009) Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 462: 65–70 doi:10.1038/nature08531
2. MacArthurS, LiX-Y, LiJ, BrownJB, ChuHC, et al. (2009) Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biol 10: R80 doi:10.1186/gb-2009-10-7-r80
3. MirnyLA (2010) Nucleosome-mediated cooperativity between transcription factors. Proc Natl Acad Sci USA 107: 22534–22539 doi:10.1073/pnas.0913805107
4. KarczewskiKJ, TatonettiNP, LandtSG, YangX, SliferT, et al. (2011) Cooperative transcription factor associations discovered using regulatory variation. Proc Natl Acad Sci USA 108: 13353–13358 doi:10.1073/pnas.1103105108
5. ZhengW, ZhaoH, ManceraE, SteinmetzLM, SnyderM (2010) Genetic analysis of variation in transcription factor binding in yeast. Nature 464: 1187–1191 doi:10.1038/nature08934
6. KasowskiM, GrubertF, HeffelfingerC, HariharanM, AsabereA, et al. (2010) Variation in transcription factor binding among humans. Science 328: 232–235 doi:10.1126/science.1183621
7. BirneyE, StamatoyannopoulosJA, DuttaA, GuigóR, GingerasTR, et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447: 799–816 doi:10.1038/nature05874
8. ENCODE Project Consortium (2011) A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9: e1001046 doi:10.1371/journal.pbio.1001046
9. SegalE, ShapiraM, RegevA, Pe'erD, BotsteinD, et al. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34: 166–176 doi:10.1038/ng1165
10. Pe'erD, TanayA, RegevA (2006) MinReg: A Scalable Algorithm for Learning Parsimonious Regulatory Networks in Yeast and Mammals. The Journal of Machine Learning Research 7: 167–189.
11. Pe'erD, RegevA, TanayA (2002) Minreg: inferring an active regulator set. Bioinformatics 18 Suppl 1: S258–S267.
12. LiaoJC, BoscoloR, YangY-L, TranLM, SabattiC, et al. (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci USA 100: 15522–15527 doi:10.1073/pnas.2136632100
13. HugheyJJ, LeeTK, CovertMW (2010) Computational modeling of mammalian signaling networks. Wiley Interdiscip Rev Syst Biol Med 2: 194–209 doi:10.1002/wsbm.52
14. EngreitzJM, DaigleBJ, MarshallJJ, AltmanRB (2010) Independent component analysis: mining microarray data for fundamental human gene expression modules. J Biomed Inform 43: 932–944 doi:10.1016/j.jbi.2010.07.001
15. TongAHY, LesageG, BaderGD, DingH, XuH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303: 808–813 doi:10.1126/science.1091317
16. YanoK, UekiN, OdaT, SekiN, MasuhoY, et al. (2000) Identification and characterization of human ZNF274 cDNA, which encodes a novel kruppel-type zinc-finger protein having nucleolar targeting ability. Genomics 65: 75–80 doi:10.1006/geno.2000.6140
17. FrietzeS, O'GeenH, BlahnikKR, JinVX, FarnhamPJ (2010) ZNF274 recruits the histone methyltransferase SETDB1 to the 3′ ends of ZNF genes. PLoS ONE 5: e15082 doi:10.1371/journal.pone.0015082
18. SchultzDC, AyyanathanK, NegorevD, MaulGG, RauscherFJ (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16: 919–932 doi:10.1101/gad.973302
19. MarfellaCGA, OhkawaY, ColesAH, GarlickDS, JonesSN, et al. (2006) Mutation of the SNF2 family member Chd2 affects mouse development and survival. J Cell Physiol 209: 162–171 doi:10.1002/jcp.20718
20. BeckerKG, BarnesKC, BrightTJ, WangSA (2004) The genetic association database. Nat Genet 36: 431–432 doi:10.1038/ng0504-431
21. HiscottJ, KwonH, GéninP (2001) Hostile takeovers: viral appropriation of the NF-kappaB pathway. J Clin Invest 107: 143–151 doi:10.1172/JCI11918
22. FarrowMA, KimE-Y, WolinskySM, SheehyAM (2011) NFAT and IRF proteins regulate transcription of the anti-HIV gene, APOBEC3G. J Biol Chem 286: 2567–2577 doi:10.1074/jbc.M110.154377
23. QuigleyM, PereyraF, NilssonB, PorichisF, FonsecaC, et al. (2010) Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nature Medicine 16: 1147–1151 doi:10.1038/nm.2232
24. SmalceljA, SertićJ, GolubićK, JurcićL, BanfićL, et al. (2009) Interactions of MinK and e-NOS gene polymorphisms appear to be inconsistent predictors of atrial fibrillation propensity, but long alleles of ESR1 promoter TA repeat may be a promising marker. Coll Antropol 33: 933–937.
25. TangK, LiX, ZhengM-Q, RozanskiGJ (2011) Role of apoptosis signal-regulating kinase-1-c-Jun NH2-terminal kinase-p38 signaling in voltage-gated K+ channel remodeling of the failing heart: regulation by thioredoxin. Antioxid Redox Signal 14: 25–35 doi:10.1089/ars.2010.3095
26. YajimaT, MurofushiY, ZhouH, ParkS, HousmanJ, et al. (2011) Absence of SOCS3 in the cardiomyocyte increases mortality in a gp130-dependent manner accompanied by contractile dysfunction and ventricular arrhythmias. Circulation 124: 2690–2701 doi:10.1161/CIRCULATIONAHA.111.028498
27. TsaiC-T, LinJ-L, LaiL-P, LinC-S, HuangSKS (2008) Membrane translocation of small GTPase Rac1 and activation of STAT1 and STAT3 in pacing-induced sustained atrial fibrillation. Heart Rhythm 5: 1285–1293 doi:10.1016/j.hrthm.2008.05.012
28. WuL, ArchackiSR, ZhangT, WangQK (2007) Induction of high STAT1 expression in transgenic mice with LQTS and heart failure. Biochem Biophys Res Commun 358: 449–454 doi:10.1016/j.bbrc.2007.04.119
29. McLeanCY, BristorD, HillerM, ClarkeSL, SchaarBT, et al. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28: 495–501 doi:10.1038/nbt.1630
30. MaL, ZhuangS (2011) The Role of STAT 3 in Tissue Fibrosis. curr chem biol 5: 44–51 doi:10.2174/187231311793564342
31. Visvikis-SiestS, MarteauJ-B (2006) Genetic variants predisposing to cardiovascular disease. Curr Opin Lipidol 17: 139–151 doi:10.1097/01.mol.0000217895.67444.de
32. BurczynskiME, PetersonRL, TwineNC, ZuberekKA, BrodeurBJ, et al. (2006) Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J Mol Diagn 8: 51–61 Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16436634&retmode=ref&cmd=prlinks.
33. NoyNF, ShahNH, WhetzelPL, DaiB, DorfM, et al. (2009) BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Research 37: W170–W173 doi:10.1093/nar/gkp440
34. HindorffLA, SethupathyP, JunkinsHA, RamosEM, MehtaJP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106: 9362–9367 doi:10.1073/pnas.0903103106
35. SmootME, OnoK, RuscheinskiJ, WangP-L, IdekerT (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27: 431–432 doi:10.1093/bioinformatics/btq675
36. SingT, SanderO, BeerenwinkelN, LengauerT (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21: 3940–3941 doi:10.1093/bioinformatics/bti623
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 2
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Association Study of Metabolic Traits Reveals Novel Gene-Metabolite-Disease Links
- A Cohesin-Independent Role for NIPBL at Promoters Provides Insights in CdLS
- Classic Selective Sweeps Revealed by Massive Sequencing in Cattle
- Arf4 Is Required for Mammalian Development but Dispensable for Ciliary Assembly