#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Insertional Mutagenesis and Deep Profiling Reveals Gene Hierarchies and a -Dependent Bottleneck in Lymphomagenesis


Retroviral insertional mutagenesis (RIM) is a powerful tool for cancer genomics that was combined in this study with deep sequencing (RIM/DS) to facilitate a comprehensive analysis of lymphoma progression. Transgenic mice expressing two potent collaborating oncogenes in the germ line (CD2-MYC, -Runx2) develop rapid onset tumours that can be accelerated and rendered polyclonal by neonatal Moloney murine leukaemia virus (MoMLV) infection. RIM/DS analysis of 28 polyclonal lymphomas identified 771 common insertion sites (CISs) defining a ‘progression network’ that encompassed a remarkably large fraction of known MoMLV target genes, with further strong indications of oncogenic selection above the background of MoMLV integration preference. Progression driven by RIM was characterised as a Darwinian process of clonal competition engaging proliferation control networks downstream of cytokine and T-cell receptor signalling. Enhancer mode activation accounted for the most efficiently selected CIS target genes, including Ccr7 as the most prominent of a set of chemokine receptors driving paracrine growth stimulation and lymphoma dissemination. Another large target gene subset including candidate tumour suppressors was disrupted by intragenic insertions. A second RIM/DS screen comparing lymphomas of wild-type and parental transgenics showed that CD2-MYC tumours are virtually dependent on activation of Runx family genes in strong preference to other potent Myc collaborating genes (Gfi1, Notch1). Ikzf1 was identified as a novel collaborating gene for Runx2 and illustrated the interface between integration preference and oncogenic selection. Lymphoma target genes for MoMLV can be classified into (a) a small set of master regulators that confer self-renewal; overcoming p53 and other failsafe pathways and (b) a large group of progression genes that control autonomous proliferation in transformed cells. These findings provide insights into retroviral biology, human cancer genetics and the safety of vector-mediated gene therapy.


Vyšlo v časopise: Insertional Mutagenesis and Deep Profiling Reveals Gene Hierarchies and a -Dependent Bottleneck in Lymphomagenesis. PLoS Genet 10(2): e32767. doi:10.1371/journal.pgen.1004167
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004167

Souhrn

Retroviral insertional mutagenesis (RIM) is a powerful tool for cancer genomics that was combined in this study with deep sequencing (RIM/DS) to facilitate a comprehensive analysis of lymphoma progression. Transgenic mice expressing two potent collaborating oncogenes in the germ line (CD2-MYC, -Runx2) develop rapid onset tumours that can be accelerated and rendered polyclonal by neonatal Moloney murine leukaemia virus (MoMLV) infection. RIM/DS analysis of 28 polyclonal lymphomas identified 771 common insertion sites (CISs) defining a ‘progression network’ that encompassed a remarkably large fraction of known MoMLV target genes, with further strong indications of oncogenic selection above the background of MoMLV integration preference. Progression driven by RIM was characterised as a Darwinian process of clonal competition engaging proliferation control networks downstream of cytokine and T-cell receptor signalling. Enhancer mode activation accounted for the most efficiently selected CIS target genes, including Ccr7 as the most prominent of a set of chemokine receptors driving paracrine growth stimulation and lymphoma dissemination. Another large target gene subset including candidate tumour suppressors was disrupted by intragenic insertions. A second RIM/DS screen comparing lymphomas of wild-type and parental transgenics showed that CD2-MYC tumours are virtually dependent on activation of Runx family genes in strong preference to other potent Myc collaborating genes (Gfi1, Notch1). Ikzf1 was identified as a novel collaborating gene for Runx2 and illustrated the interface between integration preference and oncogenic selection. Lymphoma target genes for MoMLV can be classified into (a) a small set of master regulators that confer self-renewal; overcoming p53 and other failsafe pathways and (b) a large group of progression genes that control autonomous proliferation in transformed cells. These findings provide insights into retroviral biology, human cancer genetics and the safety of vector-mediated gene therapy.


Zdroje

1. UrenAG, KoolJ, BernsA, vanLM (2005) Retroviral insertional mutagenesis: past, present and future. Oncogene 24: 7656–7672 1209043 [pii];10.1038/sj.onc.1209043 [doi].

2. MattisonJ, KoolJ, UrenAG, de RidderJ, WesselsL, et al. (2010) Novel candidate cancer genes identified by a large-scale cross-species comparative oncogenomics approach. Cancer Res 70: 883–895 0008-5472.CAN-09-1737 [pii];10.1158/0008-5472.CAN-09-1737 [doi].

3. KoolJ, UrenAG, MartinsCP, SieD, de RidderJ, et al. (2010) Insertional mutagenesis in mice deficient for p15Ink4b, p16Ink4a, p21Cip1, and p27Kip1 reveals cancer gene interactions and correlations with tumor phenotypes. Cancer Res 70: 520–531 0008-5472.CAN-09-2736 [pii];10.1158/0008-5472.CAN-09-2736 [doi].

4. AlbihnA, JohnsenJI, HenrikssonMA (2010) MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 107: 163–224 S0065-230X(10)07006-5 [pii];10.1016/S0065-230X(10)07006-5 [doi].

5. UrenAG, KoolJ, MatentzogluK, de RidderJ, MattisonJ, et al. (2008) Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133: 727–741 S0092-8674(08)00436-4 [pii];10.1016/j.cell.2008.03.021 [doi].

6. de RidderJ, UrenA, KoolJ, ReindersM, WesselsL (2006) Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput Biol 2: e166 06-PLCB-RA-0052R3 [pii];10.1371/journal.pcbi.0020166 [doi].

7. van LohuizenM, VerbeekS, ScheijenB, WientjensE, van der GuldenH, et al. (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65: 737–752 0092-8674(91)90382-9 [pii].

8. StewartM, CameronE, CampbellM, McFarlaneR, TothS, et al. (1993) Conditional expression and oncogenicity of c-myc linked to a CD2 gene dominant control region. Int J Cancer 53: 1023–1030.

9. StewartM, MackayN, HanlonL, BlythK, ScobieL, et al. (2007) Insertional mutagenesis reveals progression genes and checkpoints in MYC/Runx2 lymphomas. Cancer Res 67: 5126–5133 67/11/5126 [pii];10.1158/0008-5472.CAN-07-0433 [doi].

10. HwangHC, MartinsCP, BronkhorstY, RandelE, BernsA, et al. (2002) Identification of oncogenes collaborating with p27Kip1 loss by insertional mutagenesis and high-throughput insertion site analysis. Proc Natl Acad Sci U S A 99: 11293–11298 10.1073/pnas.162356099 [doi];162356099 [pii].

11. LiY, GolemisE, HartleyJW, HopkinsN (1987) Disease specificity of nondefective Friend and Moloney murine leukemia viruses is controlled by a small number of nucleotides. J Virol 61: 693–700.

12. Hacein-Bey-AbinaS, GarrigueA, WangGP, SoulierJ, LimA, et al. (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118: 3132–3142 10.1172/JCI35700 [doi].

13. LanderJK, FanH (1997) Low-frequency loss of heterozygosity in Moloney murine leukemia virus-induced tumors in BRAKF1/J mice. J Virol 71: 3940–3952.

14. BaxterEW, BlythK, DonehowerLA, CameronER, OnionsDE, et al. (1996) Moloney murine leukemia virus-induced lymphomas in p53-deficient mice: overlapping pathways in tumor development? J Virol 70: 2095–2100.

15. BaxterEW, BlythK, CameronER, NeilJC (2001) Selection for loss of p53 function in T-cell lymphomagenesis is alleviated by Moloney murine leukemia virus infection in myc transgenic mice. J Virol 75: 9790–9798 10.1128/JVI.75.20.9790-9798.2001 [doi].

16. BlythK, VaillantF, HanlonL, MackayN, BellM, et al. (2006) Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res 66: 2195–2201 66/4/2195 [pii];10.1158/0008-5472.CAN-05-3558 [doi].

17. VaillantF, BlythK, TerryA, BellM, CameronER, et al. (1999) A full-length Cbfa1 gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc. Oncogene 18: 7124–7134 10.1038/sj.onc.1203202 [doi].

18. BlythK, TerryA, MackayN, VaillantF, BellM, et al. (2001) Runx2: a novel oncogenic effector revealed by in vivo complementation and retroviral tagging. Oncogene 20: 295–302 10.1038/sj.onc.1204090 [doi].

19. WuX, LiY, CriseB, BurgessSM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300: 1749–1751 10.1126/science.1083413 [doi];300/5626/1749 [pii].

20. RothSL, MalaniN, BushmanFD (2011) Gammaretroviral integration into nucleosomal target DNA in vivo. J Virol 85: 7393–7401 JVI.00635-11 [pii];10.1128/JVI.00635-11 [doi].

21. CattoglioC, PellinD, RizziE, MaruggiG, CortiG, et al. (2010) High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood 116: 5507–5517 blood-2010-05-283523 [pii];10.1182/blood-2010-05-283523 [doi].

22. WilliamsA, HarkerN, KtistakiE, Veiga-FernandesH, RoderickK, et al. (2008) Position effect variegation and imprinting of transgenes in lymphocytes. Nucleic Acids Res 36: 2320–2329 gkn085 [pii];10.1093/nar/gkn085 [doi].

23. BlythK, VaillantF, HanlonL, MackayN, BellM, et al. (2006) Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res 66: 2195–2201 66/4/2195 [pii];10.1158/0008-5472.CAN-05-3558 [doi].

24. Perez-ManceraPA, RustAG, van der WeydenL, KristiansenG, LiA, et al. (2012) The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486: 266–270 nature11114 [pii];10.1038/nature11114 [doi].

25. de JongJ, de RidderJ, van der WeydenL, SunN, vanUM, et al. (2011) Computational identification of insertional mutagenesis targets for cancer gene discovery. Nucleic Acids Res 39: e105 gkr447 [pii];10.1093/nar/gkr447 [doi].

26. StewartM, MackayN, HanlonL, BlythK, ScobieL, et al. (2007) Insertional mutagenesis reveals progression genes and checkpoints in MYC/Runx2 lymphomas. Cancer Res 67: 5126–5133 67/11/5126 [pii];10.1158/0008-5472.CAN-07-0433 [doi].

27. WuX, LukeBT, BurgessSM (2006) Redefining the common insertion site. Virology 344: 292–295 S0042-6822(05)00621-5 [pii];10.1016/j.virol.2005.08.047 [doi].

28. BushmanFD (2003) Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 115: 135–138 S0092867403007608 [pii].

29. HanlonL, BarrNI, BlythK, StewartM, HaviernikP, et al. (2003) Long-range effects of retroviral insertion on c-myb: overexpression may be obscured by silencing during tumor growth in vitro. J Virol 77: 1059–1068.

30. ZhangJ, MarkusJ, BiesJ, PaulT, WolffL (2012) Three murine leukemia virus integration regions within 100 kilobases upstream of c-myb are proximal to the 5′ regulatory region of the gene through DNA looping. J Virol 86: 10524–10532 JVI.01077-12 [pii];10.1128/JVI.01077-12 [doi].

31. BeverlyLJ, CapobiancoAJ (2003) Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 3: 551–564 S1535610803001375 [pii].

32. BuntJ, HasseltNE, ZwijnenburgDA, HamdiM, KosterJ, et al. (2012) OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int J Cancer 131: E21–E32 10.1002/ijc.26474 [doi].

33. CameronRS, LiuC, MixonAS, PihkalaJP, RahnRJ, et al. (2007) Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. Cell Motil Cytoskeleton 64: 19–48 10.1002/cm.20162 [doi].

34. InabaN, IshigeH, IjichiM, SatohN, OhkawaR, et al. (1982) Immunohistochemical detection of pregnancy-specific protein (SP1) and placenta-specific tissue proteins (PP5, PP10, PP11 and PP12) in ovarian adenocarcinomas. Oncodev Biol Med 3: 379–389.

35. MesakFM, OsadaN, HashimotoK, LiuQY, NgCE (2003) Molecular cloning, genomic characterization and over-expression of a novel gene, XRRA1, identified from human colorectal cancer cell HCT116Clone2_XRR and macaque testis. BMC Genomics 4: 32 10.1186/1471-2164-4-32 [doi].

36. BradyCA, JiangD, MelloSS, JohnsonTM, JarvisLA, et al. (2011) Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145: 571–583 S0092-8674(11)00312-6 [pii];10.1016/j.cell.2011.03.035 [doi].

37. ZlotoffDA, SambandamA, LoganTD, BellJJ, SchwarzBA, et al. (2010) CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood 115: 1897–1905 blood-2009-08-237784 [pii];10.1182/blood-2009-08-237784 [doi].

38. CalderonL, BoehmT (2011) Three chemokine receptors cooperatively regulate homing of hematopoietic progenitors to the embryonic mouse thymus. Proc Natl Acad Sci U S A 108: 7517–7522 1016428108 [pii];10.1073/pnas.1016428108 [doi].

39. MburuYK, WangJ, WoodMA, WalkerWH, FerrisRL (2006) CCR7 mediates inflammation-associated tumor progression. Immunol Res 36: 61–72 IR:36:1:61 [pii];10.1385/IR:36:1:61 [doi].

40. GrayDH, TullD, UenoT, SeachN, ClassonBJ, et al. (2007) A unique thymic fibroblast population revealed by the monoclonal antibody MTS-15. J Immunol 178: 4956–4965 178/8/4956 [pii].

41. SuzukiT, ShenH, AkagiK, MorseHC, MalleyJD, et al. (2002) New genes involved in cancer identified by retroviral tagging. Nat Genet 32: 166–174 10.1038/ng949 [doi];ng949 [pii].

42. StewartM, TerryA, O'HaraM, CameronE, OnionsD, et al. (1996) til-1: a novel proviral insertion locus for Moloney murine leukaemia virus in lymphomas of CD2-myc transgenic mice. J Gen Virol 77 (Pt 3) 443–446.

43. VaillantF, BlythK, AndrewL, NeilJC, CameronER (2002) Enforced expression of Runx2 perturbs T cell development at a stage coincident with beta-selection. J Immunol 169: 2866–2874.

44. DemarestRM, DahmaneN, CapobiancoAJ (2011) Notch is oncogenic dominant in T-cell acute lymphoblastic leukemia. Blood 117: 2901–2909 blood-2010-05-286351 [pii];10.1182/blood-2010-05-286351 [doi].

45. KhandanpourC, MoroyT (2013) Growth factor independence 1 (Gfi1) as a regulator of p53 activity and a new therapeutical target for ALL. Oncotarget 4: 374–375 933 [pii].

46. JacobsJJ, ScheijenB, VonckenJW, KieboomK, BernsA, et al. (1999) Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13: 2678–2690.

47. MaserRS, ChoudhuryB, CampbellPJ, FengB, WongKK, et al. (2007) Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447: 966–971 nature05886 [pii];10.1038/nature05886 [doi].

48. LeLQ, KabarowskiJH, WongS, NguyenK, GambhirSS, et al. (2002) Positron emission tomography imaging analysis of G2A as a negative modifier of lymphoid leukemogenesis initiated by the BCR-ABL oncogene. Cancer Cell 1: 381–391 S1535610802000582 [pii].

49. SharmaA, LarueRC, PlumbMR, MalaniN, MaleF, et al. (2013) BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc Natl Acad Sci U S A 110: 12036–12041 1307157110 [pii];10.1073/pnas.1307157110 [doi].

50. GuptaSS, MaetzigT, MaertensGN, SharifA, RotheM, et al. (2013) Bromo and ET domain (BET) chromatin regulators serve as co-factors for murine leukemia virus integration. J Virol JVI.01942-13 [pii];10.1128/JVI.01942-13 [doi].

51. ThornhillSI, SchambachA, HoweSJ, UlaganathanM, GrassmanE, et al. (2008) Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol Ther 16: 590–598 6300393 [pii];10.1038/sj.mt.6300393 [doi].

52. BuonamiciS, TrimarchiT, RuoccoMG, ReavieL, CathelinS, et al. (2009) CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature 459: 1000–1004 nature08020 [pii];10.1038/nature08020 [doi].

53. StewartM, TerryA, HuM, O'HaraM, BlythK, et al. (1997) Proviral insertions induce the expression of bone-specific isoforms of PEBP2alphaA (CBFA1): evidence for a new myc collaborating oncogene. Proc Natl Acad Sci U S A 94: 8646–8651.

54. StewartM, MackayN, CameronER, NeilJC (2002) The common retroviral insertion locus Dsi1 maps 30 kilobases upstream of the P1 promoter of the murine Runx3/Cbfa3/Aml2 gene. J Virol 76: 4364–4369.

55. WottonS, StewartM, BlythK, VaillantF, KilbeyA, et al. (2002) Proviral insertion indicates a dominant oncogenic role for Runx1/AML-1 in T-cell lymphoma. Cancer Res 62: 7181–7185.

56. GirardL, HannaZ, BeaulieuN, HoemannCD, SimardC, et al. (1996) Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev 10: 1930–1944.

57. KhandanpourC, PhelanJD, VassenL, SchutteJ, ChenR, et al. (2013) Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell 23: 200–214 S1535-6108(13)00036-6 [pii];10.1016/j.ccr.2013.01.011 [doi].

58. van LohuizenM, VerbeekS, KrimpenfortP, DomenJ, SarisC, et al. (1989) Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 56: 673–682 0092-8674(89)90589-8 [pii].

59. BodrugSE, WarnerBJ, BathML, LindemanGJ, HarrisAW, et al. (1994) Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J 13: 2124–2130.

60. KlingerMB, GuilbaultB, GouldingRE, KayRJ (2005) Deregulated expression of RasGRP1 initiates thymic lymphomagenesis independently of T-cell receptors. Oncogene 24: 2695–2704 1208334 [pii];10.1038/sj.onc.1208334 [doi].

61. ScobieL, HectorRD, GrantL, BellM, NielsenAA, et al. (2009) A novel model of SCID-X1 reconstitution reveals predisposition to retrovirus-induced lymphoma but no evidence of gammaC gene oncogenicity. Mol Ther 17: 1031–1038 mt200959 [pii];10.1038/mt.2009.59 [doi].

62. BlythK, TerryA, O'HaraM, BaxterEW, CampbellM, et al. (1995) Synergy between a human c-myc transgene and p53 null genotype in murine thymic lymphomas: contrasting effects of homozygous and heterozygous p53 loss. Oncogene 10: 1717–1723.

63. BlythK, SlaterN, HanlonL, BellM, MackayN, et al. (2009) Runx1 promotes B-cell survival and lymphoma development. Blood Cells Mol Dis 43: 12–19 S1079-9796(09)00046-1 [pii];10.1016/j.bcmd.2009.01.013 [doi].

64. KuoYH, ZaidiSK, GornostaevaS, KomoriT, SteinGS, et al. (2009) Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice. Blood 113: 3323–3332 blood-2008-06-162248 [pii];10.1182/blood-2008-06-162248 [doi].

65. NakagawaM, IchikawaM, KumanoK, GoyamaS, KawazuM, et al. (2006) AML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis. Blood 108: 3329–3334 blood-2006-04-019570 [pii];10.1182/blood-2006-04-019570 [doi].

66. O'NeilJ, GrimJ, StrackP, RaoS, TibbittsD, et al. (2007) FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204: 1813–1824 jem.20070876 [pii];10.1084/jem.20070876 [doi].

67. MaS, PathakS, MandalM, TrinhL, ClarkMR, et al. (2010) Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression. Mol Cell Biol 30: 4149–4158 MCB.00224-10 [pii];10.1128/MCB.00224-10 [doi].

68. DumortierA, JeannetR, KirstetterP, KleinmannE, SellarsM, et al. (2006) Notch activation is an early and critical event during T-Cell leukemogenesis in Ikaros-deficient mice. Mol Cell Biol 26: 209–220 26/1/209 [pii];10.1128/MCB.26.1.209-220.2006 [doi].

69. BlythK, CameronER, NeilJC (2005) The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer 5: 376–387 nrc1607 [pii];10.1038/nrc1607 [doi].

70. UrenAG, MikkersH, KoolJ, van der WeydenL, LundAH, et al. (2009) A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nat Protoc 4: 789–798 nprot.2009.64 [pii];10.1038/nprot.2009.64 [doi].

71. MarchHN, RustAG, WrightNA, ten HoeveJ, de RidderJ, et al. (2011) Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 43: 1202–1209 ng.990 [pii];10.1038/ng.990 [doi].

72. de RidderJ, UrenA, KoolJ, ReindersM, WesselsL (2006) Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput Biol 2: e166 06-PLCB-RA-0052R3 [pii];10.1371/journal.pcbi.0020166 [doi].

73. JeeJ, RozowskyJ, YipKY, LochovskyL, BjornsonR, et al. (2011) ACT: aggregation and correlation toolbox for analyses of genome tracks. Bioinformatics 27: 1152–1154 btr092 [pii];10.1093/bioinformatics/btr092 [doi].

74. Wickham H. (2009) ggplot2: elegant graphics for data analysis. Springer New York.

75. BenjaminiY, HochbergY (1995) Controlling the false discovery rate: a practical and powerful approach to mutiple testing. J Roy Statist Soc Ser B 57: 289–300.

76. IrizarryRA, HobbsB, CollinF, Beazer-BarclayYD, AntonellisKJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264 10.1093/biostatistics/4.2.249 [doi];4/2/249 [pii].

77. StoreyJD (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B 64: 479–498.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#