Targeted Ablation of Nesprin 1 and Nesprin 2 from Murine Myocardium Results in Cardiomyopathy, Altered Nuclear Morphology and Inhibition of the Biomechanical Gene Response
Recent interest has focused on the importance of the nucleus and associated nucleoskeleton in regulating changes in cardiac gene expression in response to biomechanical load. Mutations in genes encoding proteins of the inner nuclear membrane and nucleoskeleton, which cause cardiomyopathy, also disrupt expression of a biomechanically responsive gene program. Furthermore, mutations in the outer nuclear membrane protein Nesprin 1 and 2 have been implicated in cardiomyopathy. Here, we identify for the first time a role for the outer nuclear membrane proteins, Nesprin 1 and Nesprin 2, in regulating gene expression in response to biomechanical load. Ablation of both Nesprin 1 and 2 in cardiomyocytes, but neither alone, resulted in early onset cardiomyopathy. Mutant cardiomyocytes exhibited altered nuclear positioning, shape, and chromatin positioning. Loss of Nesprin 1 or 2, or both, led to impairment of gene expression changes in response to biomechanical stimuli. These data suggest a model whereby biomechanical signals are communicated from proteins of the outer nuclear membrane, to the inner nuclear membrane and nucleoskeleton, to result in changes in gene expression required for adaptation of the cardiomyocyte to changes in biomechanical load, and give insights into etiologies underlying cardiomyopathy consequent to mutations in Nesprin 1 and 2.
Vyšlo v časopise:
Targeted Ablation of Nesprin 1 and Nesprin 2 from Murine Myocardium Results in Cardiomyopathy, Altered Nuclear Morphology and Inhibition of the Biomechanical Gene Response. PLoS Genet 10(2): e32767. doi:10.1371/journal.pgen.1004114
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004114
Souhrn
Recent interest has focused on the importance of the nucleus and associated nucleoskeleton in regulating changes in cardiac gene expression in response to biomechanical load. Mutations in genes encoding proteins of the inner nuclear membrane and nucleoskeleton, which cause cardiomyopathy, also disrupt expression of a biomechanically responsive gene program. Furthermore, mutations in the outer nuclear membrane protein Nesprin 1 and 2 have been implicated in cardiomyopathy. Here, we identify for the first time a role for the outer nuclear membrane proteins, Nesprin 1 and Nesprin 2, in regulating gene expression in response to biomechanical load. Ablation of both Nesprin 1 and 2 in cardiomyocytes, but neither alone, resulted in early onset cardiomyopathy. Mutant cardiomyocytes exhibited altered nuclear positioning, shape, and chromatin positioning. Loss of Nesprin 1 or 2, or both, led to impairment of gene expression changes in response to biomechanical stimuli. These data suggest a model whereby biomechanical signals are communicated from proteins of the outer nuclear membrane, to the inner nuclear membrane and nucleoskeleton, to result in changes in gene expression required for adaptation of the cardiomyocyte to changes in biomechanical load, and give insights into etiologies underlying cardiomyopathy consequent to mutations in Nesprin 1 and 2.
Zdroje
1. DahlKN, RibeiroAJS, LammerdingJ (2008) Nuclear shape, mechanics, and mechanotransduction. Circulation Research 102(11): 1307–18.
2. BuxboimA, IvanovskaIL, DischerDE (2010) Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells “feel” outside and in? J Cell Sci 123(Pt 3): 297–308.
3. DellefaveL, McNallyEM (2010) The genetics of dilated cardiomyopathy. Current Opinion in Cardiology 25: 198–204.
4. WormanHJ, OstlundC, WangY (2010) Diseases of the Nuclear Envelope. Cold Spring Harbor Perspectives in Biology 2: a000760–a000760 doi:10.1101/cshperspect.a000760
5. EvansSM, YelonD, ConlonFL, KirbyML (2010) Myocardial Lineage Development. Circulation Research 107: 1428–1444 doi:10.1161/CIRCRESAHA.111.258616
6. RazafskyD, HodzicD (2009) Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections. J Cell Biol 186: 461–472 doi:10.1083/jcb.200906068
7. SalinaD, BodoorK, EnarsonP, RaharjoWH, BurkeB (2001) Nuclear envelope dynamics. Biochem Cell Biol 79: 533–542 doi:10.1139/o01-130
8. HornHF, BrownsteinZ, LenzDR, ShivatzkiS, DrorAA, et al. (2013) The LINC complex is essential for hearing. J Clin Invest 123: 740–750 doi:10.1172/JCI66911
9. ZhangQ, SkepperJN, YangF, DaviesJD, HegyiL, et al. (2001) Nesprin: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 114(Pt 24): 4485–98.
10. StarrDA, HanM (2002) Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298: 406–409 doi:10.1126/science.1075119
11. CrispM, LiuQ, RouxK, RattnerJB, ShanahanC, et al. (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172: 41–53 doi:10.1083/jcb.200509124
12. WarrenDT, ZhangQ, WeissbergPL, ShanahanCM (2005) Nesprins: intracellular scaffolds that maintain cell architecture and coordinate cell function? Expert Rev Mol Med 7: 1–15 doi:10.1017/S1462399405009294
13. ZhangJ, FelderA, LiuY, GuoLT, LangeS, et al. (2009) Nesprin 1 is critical for nuclear positioning and anchorage. Human Molecular Genetics 19: 329–341 doi:10.1093/hmg/ddp499
14. ZhenYY, LibotteT, MunckM, NoegelAA, KorenbaumE (2002) NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Biol 115: 3207–3222.
15. ZhangQ, RagnauthCD, SkepperJN, WorthNF, WarrenDT, et al. (2005) Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J Cell Sci 118: 673–687 doi:10.1242/jcs.01642
16. PadmakumarVC, AbrahamS, BrauneS, NoegelAA, TunggalB, et al. (2004) Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton. Experimental cell research 295: 330–339 doi:10.1016/j.yexcr.2004.01.014
17. ZhangQ, BethmannC, WorthNF, DaviesJD, WasnerC, et al. (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Human Molecular Genetics 16: 2816–2833 doi:10.1093/hmg/ddm238
18. SimpsonJG, RobertsRG (2008) Patterns of evolutionary conservation in the nesprin genes highlight probable functionally important protein domains and isoforms. Biochem Soc Trans 36: 1359–1367 doi:10.1042/BST0361359
19. SosaBA, RothballerA, KutayU, SchwartzTU (2012) LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins. Cell 149: 1035–1047 doi:10.1016/j.cell.2012.03.046
20. WangW, ShiZ, JiaoS, ChenC, WangH, et al. (2012) Structural insights into SUN-KASH complexes across the nuclear envelope. Cell Res 22: 1440–1452 doi:10.1038/cr.2012.126
21. LammerdingJ, SchulzePC, TakahashiT, KozlovS, SullivanT, et al. (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113: 370–378 doi:10.1172/JCI19670
22. LammerdingJ (2005) Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J Cell Biol 170: 781–791 doi:10.1083/jcb.200502148
23. HaleCM, ShresthaAL, KhatauSB, Stewart-HutchinsonPJ, HernandezL, et al. (2008) Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys J 95: 5462–5475 doi:10.1529/biophysj.108.139428
24. LeeJSH, HaleCM, PanorchanP, KhatauSB, GeorgeJP, et al. (2007) Nuclear Lamin A/C Deficiency Induces Defects in Cell Mechanics, Polarization, and Migration. Biophys J 93: 2542–2552 doi:10.1529/biophysj.106.102426
25. Stewart-HutchinsonPJ, HaleCM, WirtzD, HodzicD (2008) Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Experimental cell research 314: 1892–1905 doi:10.1016/j.yexcr.2008.02.022
26. WormanHJ (2011) Nuclear lamins and laminopathies. J Pathol 226: 316–325 doi:10.1002/path.2999
27. PuckelwartzMJ, KesslerE, ZhangY, HodzicD, RandlesKN, et al. (2008) Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Human Molecular Genetics 18: 607–620 doi:10.1093/hmg/ddn386
28. PuckelwartzMJ, KesslerEJ, KimG, DeWittMM, ZhangY, et al. (2010) Nesprin-1 mutations in human and murine cardiomyopathy. J Mol Cell Cardiol 48: 600–608 doi:10.1016/j.yjmcc.2009.11.006
29. ZhangX, XuR, ZhuB, YangX, DingX, et al. (2007) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134: 901–908 doi:10.1242/dev.02783
30. LiangX, SunY, YeM, ScimiaMC, ChengH, et al. (2009) Targeted ablation of PINCH1 and PINCH2 from murine myocardium results in dilated cardiomyopathy and early postnatal lethality. Circulation 120: 568–576.
31. BanerjeeI, ZhangJ, Moore-MorrisT, LangeS, ShenT, et al. (2012) Thymosin Beta 4 Is Dispensable for Murine Cardiac Development and Function. Circulation Research 110: 456–464.
32. McFaddenDG, BarbosaAC, RichardsonJ, SchneiderMD, SrivastavaD, et al. (2004) The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 132: 189–201 doi:10.1242/dev.01562
33. LangeS, OuyangK, MeyerG, CuiL, ChengH, et al. (2009) Obscurin determines the architecture of the longitudinal sarcoplasmic reticulum. J Cell Sci 122: 2640–2650.
34. ChoiS, WangW, RibeiroAJS, KalinowskiA, GreggSQ, et al. (2011) Computational image analysis of nuclear morphology associated with various nuclear-specific aging disorders. Nucleus 2: 570–579 doi:10.4161/nucl.2.6.17798
35. SoonpaaMH, KimKK, PajakL, FranklinM, FieldLJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol Heart Circ Physiol 271: H2183–H2189.
36. BanerjeeI, FuselerJW, PriceRL, BorgTK, BaudinoTA (2007) Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293: H1883–H1891 doi:10.1152/ajpheart.00514.2007
37. MislowJMK, KimMS, DavisDB, McNallyEM (2002) Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. J Cell Sci 115: 61–70.
38. MislowJMK, HolaskaJM, KimMS, LeeKK, Segura-TottenM, et al. (2002) Nesprin-1α self-associates and binds directly to emerin and lamin A in vitro. FEBS Letters 525: 135–140 doi:10.1016/S0014-5793(02)03105-8
39. MuchirA, van EngelenBG, LammensM, MislowJM, McNallyE, et al. (2003) Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Experimental cell research 291: 352–362.
40. LibotteT, ZaimH, AbrahamS, PadmakumarVC, sCHNEIderM, et al. (2005) Lamin A/C–dependent localization of Nesprin-2, a giant scaffolder at the nuclear envelope. Molecular biology of the cell 16: 3411–3424.
41. TaranumS, VaylannE, MeinkeP, AbrahamS, YangL, et al. (2012) LINC complex alterations in DMD and EDMD/CMT fibroblasts. Eur J Cell Biol 91: 614–628 doi:10.1016/j.ejcb.2012.03.003
42. BrayM-AP, AdamsWJ, GeisseNA, FeinbergAW, SheehySP, et al. (2010) Nuclear morphology and deformation in engineered cardiac myocytes and tissues. Biomaterials 31: 5143–5150 doi:10.1016/j.biomaterials.2010.03.028
43. ZwergerM, JaaloukDE, LombardiML, IsermannP, MauermannM, et al. (2013) Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Human Molecular Genetics 22(12): 2335–49.
44. McCullochAD, SmaillBH, HunterPJ (1989) Regional left ventricular epicardial deformation in the passive dog heart. Circulation Research 64: 721–733.
45. GuptaV, Grande-AllenKJ (2006) Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc Res 72: 375–383 doi:10.1016/j.cardiores.2006.08.017
46. GopalanSM, FlaimC, BhatiaSN, HoshijimaM, KnoellR, et al. (2003) Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol Bioeng 81: 578–587 doi:10.1002/bit.10506
47. CamellitiP, GallagherJO, KohlP, McCullochAD (2006) Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium. Nat Protoc 1: 1379–1391 doi:10.1038/nprot.2006.203
48. CamellitiP, McCullochAD, KohlP (2005) Microstructured cocultures of cardiac myocytes and fibroblasts: a two-dimensional in vitro model of cardiac tissue. Microsc Microanal 11: 249–259 doi:10.1017/S1431927605050506
49. MammotoA, MammotoT, IngberDE (2012) Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 125: 3061–3073 doi:10.1242/jcs.093005
50. CailleN, ThoumineO, TardyY, MeisterJ-J (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. Journal of Biomechanics 35: 177–187 doi:10.1016/S0021-9290(01)00201-9
51. MorganJT, PfeifferER, ThirkillTL, KumarP, PengG, et al. (2011) Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization. Molecular biology of the cell 22: 4324–4334 doi:10.1091/mbc.E11-04-0287
52. JurkoA (2004) Echocardiographic evaluation of left ventricle postnatal growth in newborns and infants. Bratisl Lek Listy 105: 78–85.
53. TiemannK, WeyerD, DjoufackPC, GhanemA, LewalterT, et al. (2003) Increasing myocardial contraction and blood pressure in C57BL/6 mice during early postnatal development. Am J Physiol Heart Circ Physiol 284: H464–H474 doi:10.1152/ajpheart.00540.2002
54. ChenJ, KubalakSW, MinamisawaS, PriceRL (1998) Selective requirement of myosin light chain 2v in embryonic heart function. J Biol Chem 273(2): 1252–6.
55. LiangX, ZhouQ, LiX, SunY, LuM, et al. (2005) PINCH1 plays an essential role in early murine embryonic development but is dispensable in ventricular cardiomyocytes. Mol Cell Biol 25(8): 3056–62.
56. ZhouQ, ChuP-H, HuangC, ChengC-F, MartoneME, et al. (2001) Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J Cell Biol 155: 605–612.
57. Moore-MorrisT, VarraultA, MangoniME, Le DigarcherA, NegreV, et al. (2009) Identification of potential pharmacological targets by analysis of the comprehensive G protein-coupled receptor repertoire in the four cardiac chambers. Mol Pharmacol 75: 1108–1116 doi:10.1124/mol.108.054155
58. BanerjeeI, FuselerJW, IntwalaAR, BaudinoTA (2009) IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. Am J Physiol Heart Circ Physiol 296: H1694–H1704 doi:10.1152/ajpheart.00908.2008
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 2
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Association Study of Metabolic Traits Reveals Novel Gene-Metabolite-Disease Links
- A Cohesin-Independent Role for NIPBL at Promoters Provides Insights in CdLS
- Classic Selective Sweeps Revealed by Massive Sequencing in Cattle
- Arf4 Is Required for Mammalian Development but Dispensable for Ciliary Assembly